1,429 research outputs found

    Unifying Bilateral Filtering and Adversarial Training for Robust Neural Networks

    Full text link
    Recent analysis of deep neural networks has revealed their vulnerability to carefully structured adversarial examples. Many effective algorithms exist to craft these adversarial examples, but performant defenses seem to be far away. In this work, we explore the use of edge-aware bilateral filtering as a projection back to the space of natural images. We show that bilateral filtering is an effective defense in multiple attack settings, where the strength of the adversary gradually increases. In the case of an adversary who has no knowledge of the defense, bilateral filtering can remove more than 90% of adversarial examples from a variety of different attacks. To evaluate against an adversary with complete knowledge of our defense, we adapt the bilateral filter as a trainable layer in a neural network and show that adding this layer makes ImageNet images significantly more robust to attacks. When trained under a framework of adversarial training, we show that the resulting model is hard to fool with even the best attack methods.Comment: 9 pages, 14 figure

    Improving Network Robustness against Adversarial Attacks with Compact Convolution

    Full text link
    Though Convolutional Neural Networks (CNNs) have surpassed human-level performance on tasks such as object classification and face verification, they can easily be fooled by adversarial attacks. These attacks add a small perturbation to the input image that causes the network to misclassify the sample. In this paper, we focus on neutralizing adversarial attacks by compact feature learning. In particular, we show that learning features in a closed and bounded space improves the robustness of the network. We explore the effect of L2-Softmax Loss, that enforces compactness in the learned features, thus resulting in enhanced robustness to adversarial perturbations. Additionally, we propose compact convolution, a novel method of convolution that when incorporated in conventional CNNs improves their robustness. Compact convolution ensures feature compactness at every layer such that they are bounded and close to each other. Extensive experiments show that Compact Convolutional Networks (CCNs) neutralize multiple types of attacks, and perform better than existing methods in defending adversarial attacks, without incurring any additional training overhead compared to CNNs

    FUNN: Flexible Unsupervised Neural Network

    Full text link
    Deep neural networks have demonstrated high accuracy in image classification tasks. However, they were shown to be weak against adversarial examples: a small perturbation in the image which changes the classification output dramatically. In recent years, several defenses have been proposed to solve this issue in supervised classification tasks. We propose a method to obtain robust features in unsupervised learning tasks against adversarial attacks. Our method differs from existing solutions by directly learning the robust features without the need to project the adversarial examples in the original examples distribution space. A first auto-encoder A1 is in charge of perturbing the input image to fool another auto-encoder A2 which is in charge of regenerating the original image. A1 tries to find the less perturbed image under the constraint that the error in the output of A2 should be at least equal to a threshold. Thanks to this training, the encoder of A2 will be robust against adversarial attacks and could be used in different tasks like classification. Using state-of-art network architectures, we demonstrate the robustness of the features obtained thanks to this method in classification tasks

    Clipping free attacks against artificial neural networks

    Full text link
    During the last years, a remarkable breakthrough has been made in AI domain thanks to artificial deep neural networks that achieved a great success in many machine learning tasks in computer vision, natural language processing, speech recognition, malware detection and so on. However, they are highly vulnerable to easily crafted adversarial examples. Many investigations have pointed out this fact and different approaches have been proposed to generate attacks while adding a limited perturbation to the original data. The most robust known method so far is the so called C&W attack [1]. Nonetheless, a countermeasure known as feature squeezing coupled with ensemble defense showed that most of these attacks can be destroyed [6]. In this paper, we present a new method we call Centered Initial Attack (CIA) whose advantage is twofold : first, it insures by construction the maximum perturbation to be smaller than a threshold fixed beforehand, without the clipping process that degrades the quality of attacks. Second, it is robust against recently introduced defenses such as feature squeezing, JPEG encoding and even against a voting ensemble of defenses. While its application is not limited to images, we illustrate this using five of the current best classifiers on ImageNet dataset among which two are adversarialy retrained on purpose to be robust against attacks. With a fixed maximum perturbation of only 1.5% on any pixel, around 80% of attacks (targeted) fool the voting ensemble defense and nearly 100% when the perturbation is only 6%. While this shows how it is difficult to defend against CIA attacks, the last section of the paper gives some guidelines to limit their impact.Comment: 12 page

    EagleEye: Attack-Agnostic Defense against Adversarial Inputs (Technical Report)

    Full text link
    Deep neural networks (DNNs) are inherently vulnerable to adversarial inputs: such maliciously crafted samples trigger DNNs to misbehave, leading to detrimental consequences for DNN-powered systems. The fundamental challenges of mitigating adversarial inputs stem from their adaptive and variable nature. Existing solutions attempt to improve DNN resilience against specific attacks; yet, such static defenses can often be circumvented by adaptively engineered inputs or by new attack variants. Here, we present EagleEye, an attack-agnostic adversarial tampering analysis engine for DNN-powered systems. Our design exploits the {\em minimality principle} underlying many attacks: to maximize the attack's evasiveness, the adversary often seeks the minimum possible distortion to convert genuine inputs to adversarial ones. We show that this practice entails the distinct distributional properties of adversarial inputs in the input space. By leveraging such properties in a principled manner, EagleEye effectively discriminates adversarial inputs and even uncovers their correct classification outputs. Through extensive empirical evaluation using a range of benchmark datasets and DNN models, we validate EagleEye's efficacy. We further investigate the adversary's possible countermeasures, which implies a difficult dilemma for her: to evade EagleEye's detection, excessive distortion is necessary, thereby significantly reducing the attack's evasiveness regarding other detection mechanisms

    Enhancing Adversarial Defense by k-Winners-Take-All

    Full text link
    We propose a simple change to existing neural network structures for better defending against gradient-based adversarial attacks. Instead of using popular activation functions (such as ReLU), we advocate the use of k-Winners-Take-All (k-WTA) activation, a C0 discontinuous function that purposely invalidates the neural network model's gradient at densely distributed input data points. The proposed k-WTA activation can be readily used in nearly all existing networks and training methods with no significant overhead. Our proposal is theoretically rationalized. We analyze why the discontinuities in k-WTA networks can largely prevent gradient-based search of adversarial examples and why they at the same time remain innocuous to the network training. This understanding is also empirically backed. We test k-WTA activation on various network structures optimized by a training method, be it adversarial training or not. In all cases, the robustness of k-WTA networks outperforms that of traditional networks under white-box attacks

    Robustness Of Saak Transform Against Adversarial Attacks

    Full text link
    Image classification is vulnerable to adversarial attacks. This work investigates the robustness of Saak transform against adversarial attacks towards high performance image classification. We develop a complete image classification system based on multi-stage Saak transform. In the Saak transform domain, clean and adversarial images demonstrate different distributions at different spectral dimensions. Selection of the spectral dimensions at every stage can be viewed as an automatic denoising process. Motivated by this observation, we carefully design strategies of feature extraction, representation and classification that increase adversarial robustness. The performances with well-known datasets and attacks are demonstrated by extensive experimental evaluations

    A Data-driven Adversarial Examples Recognition Framework via Adversarial Feature Genome

    Full text link
    Convolutional neural networks (CNNs) are easily spoofed by adversarial examples which lead to wrong classification results. Most of the defense methods focus only on how to improve the robustness of CNNs or to detect adversarial examples. They are incapable of detecting and correctly classifying adversarial examples simultaneously. We find that adversarial examples and original images have diverse representations in the feature space, and this difference grows as layers go deeper, which we call Adversarial Feature Separability (AFS). Inspired by AFS, we propose a defense framework based on Adversarial Feature Genome (AFG), which can detect and correctly classify adversarial examples into original classes simultaneously. AFG is an innovative encoding for both image and adversarial example. It consists of group features and a mixed label. With group features which are visual representations of adversarial and original images via group visualization method, one can detect adversarial examples because of ASF of group features. With a mixed label, one can trace back to the original label of an adversarial example. Then, the classification of adversarial example is modeled as a multi-label classification trained on the AFG dataset, which can get the original class of adversarial example. Experiments show that the proposed framework not only effectively detects adversarial examples from different attack algorithms, but also correctly classifies adversarial examples. Our framework potentially gives a new perspective, i.e., a data-driven way, to improve the robustness of a CNN model.Comment: 10 pages, 5 figures, 8 table

    The Adversarial Attack and Detection under the Fisher Information Metric

    Full text link
    Many deep learning models are vulnerable to the adversarial attack, i.e., imperceptible but intentionally-designed perturbations to the input can cause incorrect output of the networks. In this paper, using information geometry, we provide a reasonable explanation for the vulnerability of deep learning models. By considering the data space as a non-linear space with the Fisher information metric induced from a neural network, we first propose an adversarial attack algorithm termed one-step spectral attack (OSSA). The method is described by a constrained quadratic form of the Fisher information matrix, where the optimal adversarial perturbation is given by the first eigenvector, and the model vulnerability is reflected by the eigenvalues. The larger an eigenvalue is, the more vulnerable the model is to be attacked by the corresponding eigenvector. Taking advantage of the property, we also propose an adversarial detection method with the eigenvalues serving as characteristics. Both our attack and detection algorithms are numerically optimized to work efficiently on large datasets. Our evaluations show superior performance compared with other methods, implying that the Fisher information is a promising approach to investigate the adversarial attacks and defenses.Comment: Accepted as an AAAI-2019 oral pape

    Robust Sparse Regularization: Simultaneously Optimizing Neural Network Robustness and Compactness

    Full text link
    Deep Neural Network (DNN) trained by the gradient descent method is known to be vulnerable to maliciously perturbed adversarial input, aka. adversarial attack. As one of the countermeasures against adversarial attack, increasing the model capacity for DNN robustness enhancement was discussed and reported as an effective approach by many recent works. In this work, we show that shrinking the model size through proper weight pruning can even be helpful to improve the DNN robustness under adversarial attack. For obtaining a simultaneously robust and compact DNN model, we propose a multi-objective training method called Robust Sparse Regularization (RSR), through the fusion of various regularization techniques, including channel-wise noise injection, lasso weight penalty, and adversarial training. We conduct extensive experiments across popular ResNet-20, ResNet-18 and VGG-16 DNN architectures to demonstrate the effectiveness of RSR against popular white-box (i.e., PGD and FGSM) and black-box attacks. Thanks to RSR, 85% weight connections of ResNet-18 can be pruned while still achieving 0.68% and 8.72% improvement in clean- and perturbed-data accuracy respectively on CIFAR-10 dataset, in comparison to its PGD adversarial training baseline
    • …
    corecore