210 research outputs found

    Secure Split Learning against Property Inference, Data Reconstruction, and Feature Space Hijacking Attacks

    Full text link
    Split learning of deep neural networks (SplitNN) has provided a promising solution to learning jointly for the mutual interest of a guest and a host, which may come from different backgrounds, holding features partitioned vertically. However, SplitNN creates a new attack surface for the adversarial participant, holding back its practical use in the real world. By investigating the adversarial effects of highly threatening attacks, including property inference, data reconstruction, and feature hijacking attacks, we identify the underlying vulnerability of SplitNN and propose a countermeasure. To prevent potential threats and ensure the learning guarantees of SplitNN, we design a privacy-preserving tunnel for information exchange between the guest and the host. The intuition is to perturb the propagation of knowledge in each direction with a controllable unified solution. To this end, we propose a new activation function named R3eLU, transferring private smashed data and partial loss into randomized responses in forward and backward propagations, respectively. We give the first attempt to secure split learning against three threatening attacks and present a fine-grained privacy budget allocation scheme. The analysis proves that our privacy-preserving SplitNN solution provides a tight privacy budget, while the experimental results show that our solution performs better than existing solutions in most cases and achieves a good tradeoff between defense and model usability.Comment: 23 page

    Assessing the security of hardware-assisted isolation techniques

    Get PDF

    Markov modeling of moving target defense games

    Get PDF
    We introduce a Markov-model-based framework for Moving Target Defense (MTD) analysis. The framework allows modeling of broad range of MTD strategies, provides general theorems about how the probability of a successful adversary defeating an MTD strategy is related to the amount of time/cost spent by the adversary, and shows how a multi-level composition of MTD strategies can be analyzed by a straightforward combination of the analysis for each one of these strategies. Within the proposed framework we define the concept of security capacity which measures the strength or effectiveness of an MTD strategy: the security capacity depends on MTD specific parameters and more general system parameters. We apply our framework to two concrete MTD strategies

    Group-based Robustness: A General Framework for Customized Robustness in the Real World

    Full text link
    Machine-learning models are known to be vulnerable to evasion attacks that perturb model inputs to induce misclassifications. In this work, we identify real-world scenarios where the true threat cannot be assessed accurately by existing attacks. Specifically, we find that conventional metrics measuring targeted and untargeted robustness do not appropriately reflect a model's ability to withstand attacks from one set of source classes to another set of target classes. To address the shortcomings of existing methods, we formally define a new metric, termed group-based robustness, that complements existing metrics and is better-suited for evaluating model performance in certain attack scenarios. We show empirically that group-based robustness allows us to distinguish between models' vulnerability against specific threat models in situations where traditional robustness metrics do not apply. Moreover, to measure group-based robustness efficiently and accurately, we 1) propose two loss functions and 2) identify three new attack strategies. We show empirically that with comparable success rates, finding evasive samples using our new loss functions saves computation by a factor as large as the number of targeted classes, and finding evasive samples using our new attack strategies saves time by up to 99\% compared to brute-force search methods. Finally, we propose a defense method that increases group-based robustness by up to 3.52×\times
    • …
    corecore