309 research outputs found

    Motivating the Rules of the Game for Adversarial Example Research

    Full text link
    Advances in machine learning have led to broad deployment of systems with impressive performance on important problems. Nonetheless, these systems can be induced to make errors on data that are surprisingly similar to examples the learned system handles correctly. The existence of these errors raises a variety of questions about out-of-sample generalization and whether bad actors might use such examples to abuse deployed systems. As a result of these security concerns, there has been a flurry of recent papers proposing algorithms to defend against such malicious perturbations of correctly handled examples. It is unclear how such misclassifications represent a different kind of security problem than other errors, or even other attacker-produced examples that have no specific relationship to an uncorrupted input. In this paper, we argue that adversarial example defense papers have, to date, mostly considered abstract, toy games that do not relate to any specific security concern. Furthermore, defense papers have not yet precisely described all the abilities and limitations of attackers that would be relevant in practical security. Towards this end, we establish a taxonomy of motivations, constraints, and abilities for more plausible adversaries. Finally, we provide a series of recommendations outlining a path forward for future work to more clearly articulate the threat model and perform more meaningful evaluation

    Adversarial Attacks against Face Recognition: A Comprehensive Study

    Full text link
    Face recognition (FR) systems have demonstrated outstanding verification performance, suggesting suitability for real-world applications ranging from photo tagging in social media to automated border control (ABC). In an advanced FR system with deep learning-based architecture, however, promoting the recognition efficiency alone is not sufficient, and the system should also withstand potential kinds of attacks designed to target its proficiency. Recent studies show that (deep) FR systems exhibit an intriguing vulnerability to imperceptible or perceptible but natural-looking adversarial input images that drive the model to incorrect output predictions. In this article, we present a comprehensive survey on adversarial attacks against FR systems and elaborate on the competence of new countermeasures against them. Further, we propose a taxonomy of existing attack and defense methods based on different criteria. We compare attack methods on the orientation and attributes and defense approaches on the category. Finally, we explore the challenges and potential research direction

    Explainable Black-Box Attacks Against Model-based Authentication

    Full text link
    Establishing unique identities for both humans and end systems has been an active research problem in the security community, giving rise to innovative machine learning-based authentication techniques. Although such techniques offer an automated method to establish identity, they have not been vetted against sophisticated attacks that target their core machine learning technique. This paper demonstrates that mimicking the unique signatures generated by host fingerprinting and biometric authentication systems is possible. We expose the ineffectiveness of underlying machine learning classification models by constructing a blind attack based around the query synthesis framework and utilizing Explainable-AI (XAI) techniques. We launch an attack in under 130 queries on a state-of-the-art face authentication system, and under 100 queries on a host authentication system. We examine how these attacks can be defended against and explore their limitations. XAI provides an effective means for adversaries to infer decision boundaries and provides a new way forward in constructing attacks against systems using machine learning models for authentication

    Adversarial Examples: Attacks and Defenses for Deep Learning

    Full text link
    With rapid progress and significant successes in a wide spectrum of applications, deep learning is being applied in many safety-critical environments. However, deep neural networks have been recently found vulnerable to well-designed input samples, called adversarial examples. Adversarial examples are imperceptible to human but can easily fool deep neural networks in the testing/deploying stage. The vulnerability to adversarial examples becomes one of the major risks for applying deep neural networks in safety-critical environments. Therefore, attacks and defenses on adversarial examples draw great attention. In this paper, we review recent findings on adversarial examples for deep neural networks, summarize the methods for generating adversarial examples, and propose a taxonomy of these methods. Under the taxonomy, applications for adversarial examples are investigated. We further elaborate on countermeasures for adversarial examples and explore the challenges and the potential solutions.Comment: Github: https://github.com/chbrian/awesome-adversarial-examples-d

    A Survey on Resilient Machine Learning

    Full text link
    Machine learning based system are increasingly being used for sensitive tasks such as security surveillance, guiding autonomous vehicle, taking investment decisions, detecting and blocking network intrusion and malware etc. However, recent research has shown that machine learning models are venerable to attacks by adversaries at all phases of machine learning (eg, training data collection, training, operation). All model classes of machine learning systems can be misled by providing carefully crafted inputs making them wrongly classify inputs. Maliciously created input samples can affect the learning process of a ML system by either slowing down the learning process, or affecting the performance of the learned mode, or causing the system make error(s) only in attacker's planned scenario. Because of these developments, understanding security of machine learning algorithms and systems is emerging as an important research area among computer security and machine learning researchers and practitioners. We present a survey of this emerging area in machine learning

    Defending against substitute model black box adversarial attacks with the 01 loss

    Full text link
    Substitute model black box attacks can create adversarial examples for a target model just by accessing its output labels. This poses a major challenge to machine learning models in practice, particularly in security sensitive applications. The 01 loss model is known to be more robust to outliers and noise than convex models that are typically used in practice. Motivated by these properties we present 01 loss linear and 01 loss dual layer neural network models as a defense against transfer based substitute model black box attacks. We compare the accuracy of adversarial examples from substitute model black box attacks targeting our 01 loss models and their convex counterparts for binary classification on popular image benchmarks. Our 01 loss dual layer neural network has an adversarial accuracy of 66.2%, 58%, 60.5%, and 57% on MNIST, CIFAR10, STL10, and ImageNet respectively whereas the sigmoid activated logistic loss counterpart has accuracies of 63.5%, 19.3%, 14.9%, and 27.6%. Except for MNIST the convex counterparts have substantially lower adversarial accuracies. We show practical applications of our models to deter traffic sign and facial recognition adversarial attacks. On GTSRB street sign and CelebA facial detection our 01 loss network has 34.6% and 37.1% adversarial accuracy respectively whereas the convex logistic counterpart has accuracy 24% and 1.9%. Finally we show that our 01 loss network can attain robustness on par with simple convolutional neural networks and much higher than its convex counterpart even when attacked with a convolutional network substitute model. Our work shows that 01 loss models offer a powerful defense against substitute model black box attacks.Comment: arXiv admin note: substantial text overlap with arXiv:2006.07800; text overlap with arXiv:2008.0914

    A General Framework for Adversarial Examples with Objectives

    Full text link
    Images perturbed subtly to be misclassified by neural networks, called adversarial examples, have emerged as a technically deep challenge and an important concern for several application domains. Most research on adversarial examples takes as its only constraint that the perturbed images are similar to the originals. However, real-world application of these ideas often requires the examples to satisfy additional objectives, which are typically enforced through custom modifications of the perturbation process. In this paper, we propose adversarial generative nets (AGNs), a general methodology to train a generator neural network to emit adversarial examples satisfying desired objectives. We demonstrate the ability of AGNs to accommodate a wide range of objectives, including imprecise ones difficult to model, in two application domains. In particular, we demonstrate physical adversarial examples---eyeglass frames designed to fool face recognition---with better robustness, inconspicuousness, and scalability than previous approaches, as well as a new attack to fool a handwritten-digit classifier.Comment: Accepted for publication at ACM TOP

    Defending Model Inversion and Membership Inference Attacks via Prediction Purification

    Full text link
    Neural networks are susceptible to data inference attacks such as the model inversion attack and the membership inference attack, where the attacker could infer the reconstruction and the membership of a data sample from the confidence scores predicted by the target classifier. In this paper, we propose a unified approach, namely purification framework, to defend data inference attacks. It purifies the confidence score vectors predicted by the target classifier by reducing their dispersion. The purifier can be further specialized in defending a particular attack via adversarial learning. We evaluate our approach on benchmark datasets and classifiers. We show that when the purifier is dedicated to one attack, it naturally defends the other one, which empirically demonstrates the connection between the two attacks. The purifier can effectively defend both attacks. For example, it can reduce the membership inference accuracy by up to 15% and increase the model inversion error by a factor of up to 4. Besides, it incurs less than 0.4% classification accuracy drop and less than 5.5% distortion to the confidence scores.Comment: updated experiments and result

    Accurate and Robust Neural Networks for Security Related Applications Exampled by Face Morphing Attacks

    Full text link
    Artificial neural networks tend to learn only what they need for a task. A manipulation of the training data can counter this phenomenon. In this paper, we study the effect of different alterations of the training data, which limit the amount and position of information that is available for the decision making. We analyze the accuracy and robustness against semantic and black box attacks on the networks that were trained on different training data modifications for the particular example of morphing attacks. A morphing attack is an attack on a biometric facial recognition system where the system is fooled to match two different individuals with the same synthetic face image. Such a synthetic image can be created by aligning and blending images of the two individuals that should be matched with this image.Comment: 16 pages, 7 figure

    Adversarial Attacks and Defences: A Survey

    Full text link
    Deep learning has emerged as a strong and efficient framework that can be applied to a broad spectrum of complex learning problems which were difficult to solve using the traditional machine learning techniques in the past. In the last few years, deep learning has advanced radically in such a way that it can surpass human-level performance on a number of tasks. As a consequence, deep learning is being extensively used in most of the recent day-to-day applications. However, security of deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify the output. In recent times, different types of adversaries based on their threat model leverage these vulnerabilities to compromise a deep learning system where adversaries have high incentives. Hence, it is extremely important to provide robustness to deep learning algorithms against these adversaries. However, there are only a few strong countermeasures which can be used in all types of attack scenarios to design a robust deep learning system. In this paper, we attempt to provide a detailed discussion on different types of adversarial attacks with various threat models and also elaborate the efficiency and challenges of recent countermeasures against them
    • …
    corecore