776 research outputs found

    Counteracting UDP flooding attacks in SDN

    Get PDF
    Software-defined networking (SDN) is a new networking architecture with a centralized control mechanism. SDN has proven to be successful in improving not only the network performance, but also security. However, centralized control in the SDN architecture is associated with new security vulnerabilities. In particular, user-datagram-protocol (UDP) flooding attacks can be easily launched and cause serious packet-transmission delays, controller-performance loss, and even network shutdown. In response to applications in the Internet of Things (IoT) field, this study considers UDP flooding attacks in SDN and proposes two lightweight countermeasures. The first method sometimes sacrifices address-resolution-protocol (ARP) requests to achieve a high level of security. In the second method, although packets must sometimes be sacrificed when undergoing an attack before starting to defend, the detection of the network state can prevent normal packets from being sacrificed. When blocking a network attack, attacks from the affected port are directly blocked without affecting normal ports. The performance and security of the proposed methods were confirmed by means of extensive experiments. Compared with the situation where no defense is implemented, or similar defense methods are implemented, after simulating a UDP flooding attack, our proposed method performed better in terms of the available bandwidth, centralprocessing-unit (CPU) consumption, and network delay time

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    Cyber deception against DDoS attack using moving target defence framework in SDN IOT-EDGE networks

    Get PDF
    Software Defined Networking (SDN) networking paradigm advancements are advantageous, but they have also brought new security concerns. The Internet of Things (IoT) Edge Computing servers provide closer access to cloud services and is also a point of target for availability attacks. The Distributed Denial of Service (DDoS) attacks on SDN IoT-Edge Computing caused by botnet of IoT hosts has compromised major services and is still an impending concern due to the Work From Home virtual office shift attributed by Covid19 pandemic. The effectiveness of a Moving Target Defense (MTD) technique based on SDN for combating DDoS attacks in IoT-Edge networks was investigated in this study with a test scenario based on a smart building. An MTD Reactive and Proactive Network Address Shuffling Mechanism was developed, tested, and evaluated with results showing successful defence against UDP, TCP SYN, and LAND DDoS attacks; preventing IoT devices from being botnet compromised due to the short-lived network address; and ensuring reliable system performance

    A review of solutions for SDN-Exclusive security issues

    Get PDF
    Software Defined Networking is a paradigm still in its emergent stages in the realm of production-scale networks. Centralisation of network control introduces a new level of flexibility for network administrators and programmers. Security is a huge factor contributing to consumer resistance to implementation of SDN architecture. Without addressing the issues inherent from SDNs centralised nature, the benefits in performance and network configurative flexibility cannot be harnessed. This paper explores key threats posed to SDN environments and comparatively analyses some of the mechanisms proposed as mitigations against these threats – it also provides some insight into the future works which would enable a securer SDN architecture.

    Understanding the Performance of Software Defined Wireless Sensor Networks under Denial of Service Attack

    Get PDF
    Wireless sensor networks (WSN) are formed from restricted devices and are known to be vulnerable to denial of service (DoS) security attacks. In parallel, software-defined networking has been identified as a solution for many WSN challenges with respect to flexibility and reuse. Conversely, the SDN control plane centralization may bring about new security threats and vulnerabilities. In this work, we perform a traffic analysis of software-defined WSN (SDWSN) in order to gain understanding of the network's performance when it is under certain types of DoS attacks. In particular, we consider three different DoS scenarios of increasing aggressiveness: (i) false flow requests DoS, (ii) false data flow forwarding DoS, and, (iii) false neighbor information passing DoS. Our simulation results for the latter two types of attack showed significant changes both in the average value and the variance of the delivery rate and the overall overhead. These results demonstrate that it is possible to identify when a SDWSN is under a particular type of DoS, by monitoring the respective quantities
    • …
    corecore