59 research outputs found

    Engineering Dynamics and Life Sciences

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    14th Conference on Dynamical Systems Theory and Applications DSTA 2017 ABSTRACTS

    Get PDF
    From Preface: This is the fourteen time when the conference “Dynamical Systems – Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and the Ministry of Science and Higher Education. It is a great pleasure that our invitation has been accepted by so many people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcome nearly 250 persons from 38 countries all over the world. They decided to share the results of their research and many years experiences in the discipline of dynamical systems by submitting many very interesting papers. This booklet contains a collection of 375 abstracts, which have gained the acceptance of referees and have been qualified for publication in the conference proceedings [...]

    Explorer-II: Wireless Self-Powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    Full text link

    NASA Tech Briefs, December 1989

    Get PDF
    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences

    Proceedings of the 10th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components

    Get PDF
    This conference, the tenth in a series on NDE in relation to structural integrity for nuclear and pressurized components, was held from 1st October to 3 October 2013, in Cannes, France. The scientific programme was co-produced by the European Commission’s Joint Research Centre, Institute for Energy and Transport (EC-JRC/IET). The Conference has been coordinated by the ConfĂ©dĂ©ration Française pour les Essais Non Destructifs (COFREND). The first conference, under the sole responsibility of EC-JRC was held in Amsterdam, 20-22 October 1998. The second conference was locally organized by the EPRI NDE Center in New Orleans, 24-26 May 2000, the third one by Tecnatom in Seville, 14-16 November 2001, the fourth one by the British Institute of Non-Destructive Testing in London, 6-8 December 2004, the fifth by EPRI in San Diego, 10-12 May 2006, the sixth by Marovisz in Budapest, 8-10 October 2007, the seventh by the University of Tokyo and JAPEIC in Yokohama, the eight by DGZfP, 29 September to 1st October 2010, the ninth by Epri NDE Center, 22-24 May 2012 in Seattle. The theme of this conference series is to provide the link between the information originated by NDE and the use made of this information in assessing structural integrity. In this context, there is often a need to determine NDE performance against structural integrity requirements through a process of qualification or performance demonstration. There is also a need to develop NDE to address shortcomings revealed by such performance demonstration or otherwise. Finally, the links between NDE and structural integrity require strengthening in many areas so that NDE is focussed on the components at greatest risk and provides the precise information required for assessment of integrity. These were the issues addressed by the papers selected for the conference.JRC.F.5-Nuclear Reactor Safety Assessmen

    The Development of Methods to Estimate and Reduce Design Rework

    Get PDF
    Design rework includes unnecessary repetition in design tasks to correct design problems. Resolving design matters in advance, through in-depth understanding of the design planning and rework issues and development of effective predictive tools could contribute to higher business profit margins and a faster product time-to-market. This research aims to develop three novel and structured methods to predict the design rework occurrence and effort at the very early design stage, which may otherwise remain undiscovered until the testing and refinement phase. The major contribution obtained from the Design Rework Probability of Occurrence Estimation method, DRePOE, is the development of design rework drivers. The developed drivers have been synthesised with data from interview results, direct observations, and archival records obtained from eleven world-class aerospace and automotive components manufacturers. To predict the probability of occurrence, the individual score of each driver was compared against historical records utilising the analogy-based method. The Design Rework Effort Estimation method, DREE, was developed to interconnect functional structures and identify failure relationships among components. A significant contribution of The DREE method is its capability to assess the design rework effort at the component level under the worst-case scenario. Next a Prioritisation Design by Design Rework Effort Based method, PriDDREB, was developed to provide a tool to forecast the maximum design rework given the constraint. This method provides a tool to determine and prioritise the components that may require a significant design rework effort. The three methods developed were validated with an automotive water pump, a turbocharger, and a McPherson strut suspension system in accordance with the validation square method. It is demonstrated that DRePOE, DREE, PriDDREB methods can offer the product design team a means to predict the probability of design rework occurrence and assess the required effort during the testing and refinement phase at the very early design phase

    Design and Application of Electrical Machines

    Get PDF
    Electrical machines are one of the most important components of the industrial world. They are at the heart of the new industrial revolution, brought forth by the development of electromobility and renewable energy systems. Electric motors must meet the most stringent requirements of reliability, availability, and high efficiency in order, among other things, to match the useful lifetime of power electronics in complex system applications and compete in the market under ever-increasing pressure to deliver the highest performance criteria. Today, thanks to the application of highly efficient numerical algorithms running on high-performance computers, it is possible to design electric machines and very complex drive systems faster and at a lower cost. At the same time, progress in the field of material science and technology enables the development of increasingly complex motor designs and topologies. The purpose of this Special Issue is to contribute to this development of electric machines. The publication of this collection of scientific articles, dedicated to the topic of electric machine design and application, contributes to the dissemination of the above information among professionals dealing with electrical machines

    NASA Tech Briefs, April 2000

    Get PDF
    Topics covered include: Imaging/Video/Display Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Test and Measurement; Mathematics and Information Sciences; Books and Reports

    Time Localization of Abrupt Changes in Cutting Process using Hilbert Huang Transform

    Get PDF
    Cutting process is extremely dynamical process influenced by different phenomena such as chip formation, dynamical responses and condition of machining system elements. Different phenomena in cutting zone have signatures in different frequency bands in signal acquired during process monitoring. The time localization of signal’s frequency content is very important. An emerging technique for simultaneous analysis of the signal in time and frequency domain that can be used for time localization of frequency is Hilbert Huang Transform (HHT). It is based on empirical mode decomposition (EMD) of the signal into intrinsic mode functions (IMFs) as simple oscillatory modes. IMFs obtained using EMD can be processed using Hilbert Transform and instantaneous frequency of the signal can be computed. This paper gives a methodology for time localization of cutting process stop during intermittent turning. Cutting process stop leads to abrupt changes in acquired signal correlated to certain frequency band. The frequency band related to abrupt changes is localized in time using HHT. The potentials and limitations of HHT application in machining process monitoring are shown

    Application and validation of capacitive proximity sensing systems in smart environments

    Get PDF
    Smart environments feature a number of computing and sensing devices that support occupants in performing their tasks. In the last decades there has been a multitude of advances in miniaturizing sensors and computers, while greatly increasing their performance. As a result new devices are introduced into our daily lives that have a plethora of functions. Gathering information about the occupants is fundamental in adapting the smart environment according to preference and situation. There is a large number of different sensing devices available that can provide information about the user. They include cameras, accelerometers, GPS, acoustic systems, or capacitive sensors. The latter use the properties of an electric field to sense presence and properties of conductive objects within range. They are commonly employed in finger-controlled touch screens that are present in billions of devices. A less common variety is the capacitive proximity sensor. It can detect the presence of the human body over a distance, providing interesting applications in smart environments. Choosing the right sensor technology is an important decision in designing a smart environment application. Apart from looking at previous use cases, this process can be supported by providing more formal methods. In this work I present a benchmarking model that is designed to support this decision process for applications in smart environments. Previous benchmarks for pervasive systems have been adapted towards sensors systems and include metrics that are specific for smart environments. Based on distinct sensor characteristics, different ratings are used as weighting factors in calculating a benchmarking score. The method is verified using popularity matching in two scientific databases. Additionally, there are extensions to cope with central tendency bias and normalization with regards to average feature rating. Four relevant application areas are identified by applying this benchmark to applications in smart environments and capacitive proximity sensors. They are indoor localization, smart appliances, physiological sensing and gesture interaction. Any application area has a set of challenges regarding the required sensor technology, layout of the systems, and processing that can be tackled using various new or improved methods. I will present a collection of existing and novel methods that support processing data generated by capacitive proximity sensors. These are in the areas of sparsely distributed sensors, model-driven fitting methods, heterogeneous sensor systems, image-based processing and physiological signal processing. To evaluate the feasibility of these methods, several prototypes have been created and tested for performance and usability. Six of them are presented in detail. Based on these evaluations and the knowledge generated in the design process, I am able to classify capacitive proximity sensing in smart environments. This classification consists of a comparison to other popular sensing technologies in smart environments, the major benefits of capacitive proximity sensors, and their limitations. In order to support parties interested in developing smart environment applications using capacitive proximity sensors, I present a set of guidelines that support the decision process from technology selection to choice of processing methods
    • 

    corecore