1,199 research outputs found

    Artificial intelligence for advanced manufacturing quality

    Get PDF
    100 p.This Thesis addresses the challenge of AI-based image quality control systems applied to manufacturing industry, aiming to improve this field through the use of advanced techniques for data acquisition and processing, in order to obtain robust, reliable and optimal systems. This Thesis presents contributions onthe use of complex data acquisition techniques, the application and design of specialised neural networks for the defect detection, and the integration and validation of these systems in production processes. It has been developed in the context of several applied research projects that provided a practical feedback of the usefulness of the proposed computational advances as well as real life data for experimental validation

    In-Situ Process Monitoring for Metal Additive Manufacturing (AM) Through Acoustic Technique

    Get PDF
    Additive Manufacturing (AM) is currently a widely used technology in different industries such as aerospace, medical, and consumer products. Previously it was mainly used for prototyping of the products, but now it is equally valuable for commercial product manufacturing. More profound understanding is still needed to track and identify defects during the AM process to ensure higher quality products with less material waste. Nondestructive testing becomes an essential form of testing for AM parts, where AE is one of the most used methods for in situ process monitoring. The Acoustic Emission (AE) approach has gained a reputation in nondestructive testing (NDT) as one of the most influential and proven techniques in numerous engineering fields. Material testing through Acoustic Emission (AE) has become one of the most popular techniques in AM because of its capability to detect defects and anomalies and monitor the progress of flaws. Various AE technique approaches have been under investigation for in-situ monitoring of AM products. The preliminary results from AE exploration show promising results which need further investigation on data analysis and signal processing. AE monitoring technique allows finding the defects during the fabrication process, so that failure of the AM can be prevented, or the process condition can be finely tuned to avoid significant damages or waste of materials. In this work, recorded AE data over the Direct Energy Deposition (DED) additive manufacturing process was analyzed by the Machine Learning (ML) algorithm to classify different build conditions. The feature extraction method is used to obtain the required data for further processing. Wavelet transformation of signals has been used to acquire the time-frequency spectrum of the AE signals for different process conditions, and image processing by Convolutional Neural Network (CNN) is used to identify the transformed spectrum of different build conditions. The identifiers in AE signals are correlated to the part quality by statistical methods. The results show a promising approach for quality evaluation and process monitoring in AM. In this work, the assessment of deposition properties at different process conditions is also done by optical microscope, Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), and nanoindentation technique

    Inverse Mathematics Enhanced Neural Networks to Improve Defect Detection on Radiation Detectors

    Get PDF
    In this thesis, Convolutional Neural Networks (CNN) and Inverse Mathematic methods will be discussed for automated defect detection in materials that are used for radiation detectors. The first part of the thesis is dedicated to the literature review on the methods that are used. These include a general overview of Neural Networks, computer vision algorithms and Inverse Mathematics methods, such as wavelet transformations, or total variation denoising. In the Materials and Methods section, how these methods can be utilized in this problem setting will be examined. Results and Discussions part will reveal the outcomes and takeaways from the experiments. A focus of this thesis is put on the CNN architecture that fits the task best, how to optimize that chosen CNN architecture and discuss, how selected inputs created by Inverse Mathematics influence the Neural Network and it's performance. The results of this research reveal that the initially chosen Retina-Net is well suited for the task and the Inverse Mathematics methods utilized in this thesis provided useful insights

    Anomaly segmentation model for defects detection in electroluminescence images of heterojunction solar cells

    Full text link
    Efficient defect detection in solar cell manufacturing is crucial for stable green energy technology manufacturing. This paper presents a deep-learning-based automatic detection model SeMaCNN for classification and semantic segmentation of electroluminescent images for solar cell quality evaluation and anomalies detection. The core of the model is an anomaly detection algorithm based on Mahalanobis distance that can be trained in a semi-supervised manner on imbalanced data with small number of digital electroluminescence images with relevant defects. This is particularly valuable for prompt model integration into the industrial landscape. The model has been trained with the on-plant collected dataset consisting of 68 748 electroluminescent images of heterojunction solar cells with a busbar grid. Our model achieves the accuracy of 92.5%, F1 score 95.8%, recall 94.8%, and precision 96.9% within the validation subset consisting of 1049 manually annotated images. The model was also tested on the open ELPV dataset and demonstrates stable performance with accuracy 94.6% and F1 score 91.1%. The SeMaCNN model demonstrates a good balance between its performance and computational costs, which make it applicable for integrating into quality control systems of solar cell manufacturing

    The application of machine learning to sensor signals for machine tool and process health assessment

    Get PDF
    Due to the latest advancements in monitoring technologies, interest in the possibility of early-detection of quality issues in components has grown considerably in the manufacturing industry. However, implementation of such techniques has been limited outside of the research environment due to the more demanding scenarios posed by production environments. This paper proposes a method of assessing the health of a machining process and the machine tool itself by applying a range of machine learning (ML) techniques to sensor data. The aim of this work is not to provide complete diagnosis of a condition, but to provide a rapid indication that the machine tool or process has changed beyond acceptable limits; making for a more realistic solution for production environments. Prior research by the authors found good visibility of simulated failure modes in a number of machining operations and machine tool fingerprint routines, through the defined sensor suite. The current research set out to utilise this system, and streamline the test procedure to obtain a large dataset to test ML techniques upon. Various supervised and unsupervised ML techniques were implemented using a range of features extracted from the raw sensor signals, principal component analysis and continuous wavelet transform. The latter were classified using convolutional neural networks (CNN); both custom-made networks, and pre-trained networks through transfer learning. The detection and classification accuracies of the simulated failure modes across all classical ML and CNN techniques tested were promising, with all approaching 100% under certain conditions

    Manufacturing Quality Control with Autoencoder-Based Defect Localization and Unsupervised Class Selection

    Full text link
    Manufacturing industries require efficient and voluminous production of high-quality finished goods. In the context of Industry 4.0, visual anomaly detection poses an optimistic solution for automatically controlling product quality with high precision. Automation based on computer vision poses a promising solution to prevent bottlenecks at the product quality checkpoint. We considered recent advancements in machine learning to improve visual defect localization, but challenges persist in obtaining a balanced feature set and database of the wide variety of defects occurring in the production line. This paper proposes a defect localizing autoencoder with unsupervised class selection by clustering with k-means the features extracted from a pre-trained VGG-16 network. The selected classes of defects are augmented with natural wild textures to simulate artificial defects. The study demonstrates the effectiveness of the defect localizing autoencoder with unsupervised class selection for improving defect detection in manufacturing industries. The proposed methodology shows promising results with precise and accurate localization of quality defects on melamine-faced boards for the furniture industry. Incorporating artificial defects into the training data shows significant potential for practical implementation in real-world quality control scenarios
    corecore