10 research outputs found

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Improper choosability and Property B

    Full text link
    A fundamental connection between list vertex colourings of graphs and Property B (also known as hypergraph 2-colourability) was already known to Erd\H{o}s, Rubin and Taylor. In this article, we draw similar connections for improper list colourings. This extends results of Kostochka, Alon, and Kr\'al' and Sgall for, respectively, multipartite graphs, graphs of large minimum degree, and list assignments with bounded list union.Comment: 12 page

    On the choosability of HH-minor-free graphs

    Full text link
    Given a graph HH, let us denote by fχ(H)f_\chi(H) and fℓ(H)f_\ell(H), respectively, the maximum chromatic number and the maximum list chromatic number of HH-minor-free graphs. Hadwiger's famous coloring conjecture from 1943 states that fχ(Kt)=t−1f_\chi(K_t)=t-1 for every t≥2t \ge 2. In contrast, for list coloring it is known that 2t−o(t)≤fℓ(Kt)≤O(t(log⁡log⁡t)6)2t-o(t) \le f_\ell(K_t) \le O(t (\log \log t)^6) and thus, fℓ(Kt)f_\ell(K_t) is bounded away from the conjectured value t−1t-1 for fχ(Kt)f_\chi(K_t) by at least a constant factor. The so-called HH-Hadwiger's conjecture, proposed by Seymour, asks to prove that fχ(H)=v(H)−1f_\chi(H)=\textsf{v}(H)-1 for a given graph HH (which would be implied by Hadwiger's conjecture). In this paper, we prove several new lower bounds on fℓ(H)f_\ell(H), thus exploring the limits of a list coloring extension of HH-Hadwiger's conjecture. Our main results are: For every ε>0\varepsilon>0 and all sufficiently large graphs HH we have fℓ(H)≥(1−ε)(v(H)+κ(H))f_\ell(H)\ge (1-\varepsilon)(\textsf{v}(H)+\kappa(H)), where κ(H)\kappa(H) denotes the vertex-connectivity of HH. For every ε>0\varepsilon>0 there exists C=C(ε)>0C=C(\varepsilon)>0 such that asymptotically almost every nn-vertex graph HH with ⌈Cnlog⁡n⌉\left\lceil C n\log n\right\rceil edges satisfies fℓ(H)≥(2−ε)nf_\ell(H)\ge (2-\varepsilon)n. The first result generalizes recent results on complete and complete bipartite graphs and shows that the list chromatic number of HH-minor-free graphs is separated from the natural lower bound (v(H)−1)(\textsf{v}(H)-1) by a constant factor for all large graphs HH of linear connectivity. The second result tells us that even when HH is a very sparse graph (with an average degree just logarithmic in its order), fℓ(H)f_\ell(H) can still be separated from (v(H)−1)(\textsf{v}(H)-1) by a constant factor arbitrarily close to 22. Conceptually these results indicate that the graphs HH for which fℓ(H)f_\ell(H) is close to (v(H)−1)(\textsf{v}(H)-1) are typically rather sparse.Comment: 14 page

    Defective DP-colorings of sparse simple graphs

    Full text link
    DP-coloring (also known as correspondence coloring) is a generalization of list coloring developed recently by Dvo\v{r}\'ak and Postle. We introduce and study (i,j)(i,j)-defective DP-colorings of simple graphs. Let gDP(i,j,n)g_{DP}(i,j,n) be the minimum number of edges in an nn-vertex DP-(i,j)(i,j)-critical graph. In this paper we determine sharp bound on gDP(i,j,n)g_{DP}(i,j,n) for each i≥3i\geq3 and j≥2i+1j\geq 2i+1 for infinitely many nn.Comment: 17 page

    Improper colourings inspired by Hadwiger’s conjecture

    Get PDF
    Hadwiger’s Conjecture asserts that every Kt-minor-free graph has a proper (t − 1)-colouring. We relax the conclusion in Hadwiger’s Conjecture via improper colourings. We prove that every Kt-minor-free graph is (2t − 2)-colourable with monochromatic components of order at most 1/2 (t − 2). This result has no more colours and much smaller monochromatic components than all previous results in this direction. We then prove that every Kt-minor-free graph is (t − 1)-colourable with monochromatic degree at most t − 2. This is the best known degree bound for such a result. Both these theorems are based on a decomposition method of independent interest. We give analogous results for Ks,t-minorfree graphs, which lead to improved bounds on generalised colouring numbers for these classes. Finally, we prove that graphs containing no Kt-immersion are 2-colourable with bounded monochromatic degree

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called “colors” to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k − 1), confirming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We define the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive different colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..
    corecore