46,835 research outputs found

    A model for time-dependent grain boundary diffusion of ions and electrons through a film or scale, with an application to alumina

    Full text link
    A model for ionic and electronic grain boundary transport through thin films, scales or membranes with columnar grain structure is introduced. The grain structure is idealized as a lattice of identical hexagonal cells - a honeycomb pattern. Reactions with the environment constitute the boundary conditions and drive the transport between the surfaces. Time-dependent simulations solving the Poisson equation self-consistently with the Nernst-Planck flux equations for the mobile species are performed. In the resulting Poisson-Nernst-Planck system of equations, the electrostatic potential is obtained from the Poisson equation in its integral form by summation. The model is used to interpret alumina membrane oxygen permeation experiments, in which different oxygen gas pressures are applied at opposite membrane surfaces and the resulting flux of oxygen molecules through the membrane is measured. Simulation results involving four mobile species, charged aluminum and oxygen vacancies, electrons, and holes, provide a complete description of the measurements and insight into the microscopic processes underpinning the oxygen permeation of the membrane. Most notably, the hypothesized transition between p-type and n-type ionic conductivity of the alumina grain boundaries as a function of the applied oxygen gas pressure is observed in the simulations. The range of validity of a simple analytic model for the oxygen permeation rate, similar to the Wagner theory of metal oxidation, is quantified by comparison to the numeric simulations. The three-dimensional model we develop here is readily adaptable to problems such as transport in a solid state electrode, or corrosion scale growth

    Mechanisms of arsenic clustering in silicon

    Full text link
    A model of arsenic clustering in silicon is proposed and analyzed. The main feature of the proposed model is the assumption that negatively charged arsenic complexes play a dominant role in the clustering process. To confirm this assumption, electron density and concentration of impurity atoms incorporated into the clusters are calculated as functions of the total arsenic concentration. A number of the negatively charged clusters incorporating a point defect and one or more arsenic atoms are investigated. It is shown that for the doubly negatively charged clusters or for clusters incorporating more than one arsenic atom the electron density reaches a maximum value and then monotonically and slowly decreases as total arsenic concentration increases. In the case of doubly negatively charged cluster incorporating two arsenic atoms, the calculated electron density agrees well with the experimental data. Agreement with the experiment confirms the conclusion that two arsenic atoms participate in the cluster formation. Among all present models, the proposed model of clustering by formation of doubly negatively charged cluster incorporating two arsenic atoms gives the best fit to the experimental data and can be used in simulation of high concentration arsenic diffusion.Comment: 13 pages, 4 figures. Revised and shortened version of the paper has been published in Phys. Rev. B, Vol.74 (3), art. no. 035205 (2006
    • …
    corecore