4,476 research outputs found

    A design for testability study on a high performance automatic gain control circuit.

    Get PDF
    A comprehensive testability study on a commercial automatic gain control circuit is presented which aims to identify design for testability (DfT) modifications to both reduce production test cost and improve test quality. A fault simulation strategy based on layout extracted faults has been used to support the study. The paper proposes a number of DfT modifications at the layout, schematic and system levels together with testability. Guidelines that may well have generic applicability. Proposals for using the modifications to achieve partial self test are made and estimates of achieved fault coverage and quality levels presente

    Layout level design for testability strategy applied to a CMOS cell library

    Get PDF
    The layout level design for testability (LLDFT) rules used here allow to avoid some hard to detect faults or even undetectable faults on a cell library by modifying the cell layout without changing their behavior and achieving a good level of reliability. These rules avoid some open faults or reduce their appearance probability. The main purpose has been to apply that set of LLDFT rules on the cells of the library designed at the Centre Nacional de Microelectronica (CNM) in order to obtain a highly testable cell library. The authors summarize the main results (area overhead and performance degradation) of the application of the LLDFT rules on the cell

    Towards Structural Testing of Superconductor Electronics

    Get PDF
    Many of the semiconductor technologies are already\ud facing limitations while new-generation data and\ud telecommunication systems are implemented. Although in\ud its infancy, superconductor electronics (SCE) is capable of\ud handling some of these high-end tasks. We have started a\ud defect-oriented test methodology for SCE, so that reliable\ud systems can be implemented in this technology. In this\ud paper, the details of the study on the Rapid Single-Flux\ud Quantum (RSFQ) process are presented. We present\ud common defects in the SCE processes and corresponding\ud test methodologies to detect them. The (measurement)\ud results prove that we are able to detect possible random\ud defects for statistical purposes in yield analysis. This\ud paper also presents possible test methodologies for RSFQ\ud circuits based on defect oriented testing (DOT)

    The characterization of recycled concrete aggregate as filter in removal of phosphorus

    Get PDF
    Phosphorus (P) is one of the key nutrients that lead to eutrophication problem in surface water. However, the existing conventional wastewater treatment system to remove phosphorus is expensive and require a complex process. Therefore, a system using low cost and environmental friendly should be practiced to overcome this problem. Recycled concrete aggregate (RCA) used as a filter system emerged as an alternative technology for phosphorus removal. This can overcome the problem of construction site waste by converting the waste into something valuable products. Thus, this study aim to investigate the physical and chemical characteristic of RCA that influenced adsorption of P. RCA was analyzed using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) testing to determine chemical composition. Results shows that RCA is highly contained with Aluminium, Calcium and Magnesium elements that enhanced the Phosphorus adsorption

    Modeling the Impact of Process Variation on Resistive Bridge Defects

    No full text
    Recent research has shown that tests generated without taking process variation into account may lead to loss of test quality. At present there is no efficient device-level modeling technique that models the effect of process variation on resistive bridges. This paper presents a fast and accurate technique to model the effect of process variation on resistive bridge defects. The proposed model is implemented in two stages: firstly, it employs an accurate transistor model (BSIM4) to calculate the critical resistance of a bridge; secondly, the effect of process variation is incorporated in this model by using three transistor parameters: gate length (L), threshold voltage (V) and effective mobility (ueff) where each follow Gaussian distribution. Experiments are conducted on a 65-nm gate library (for illustration purposes), and results show that on average the proposed modeling technique is more than 7 times faster and in the worst case, error in bridge critical resistance is 0.8% when compared with HSPICE

    On the test of single via related defects in digital VLSI designs

    Get PDF
    Vias are critical for digital circuit manufacturing, as they represent a common defect location, and a general DfM rule suggests replicating every instance for redundancy. When this is not achievable, a mandatory requirement is that the remaining single vias must be tested. We propose an automated method for generating tests and accurately evaluating test coverage of such defects, ready for use in any digital implementation flow and for integration within EDA tools, and also providing a useful quality metric. A prototype tool implementation and experimental results for an industrial case study are presented

    Compact Structural Test Generation for Analog Macros

    Get PDF
    A structural, fault-model based methodology for the generation of compact high-quality test sets for analog macros is presented. Results are shown for an IV-converter macro design. Parameters of so-called test configurations are optimized for detection of faults in a fault-list and an optimal selection algorithm results in determining the best test set. The distribution of the results along the parameter-axes of the test configurations is investigated to identify a collapsed high-quality test se

    The Detection of Defects in a Niobium Tri-layer Process

    Get PDF
    Niobium (Nb) LTS processes are emerging as the technology for future ultra high-speed systems especially in the digital domain. As the number of Josephson Junctions (JJ) per chip has recently increased to around 90000, the quality of the process has to be assured so as to realize these complex circuits. Until now, very little or no information is available in the literature on how to achieve this. In this paper we present an approach and results of a study conducted on an RSFQ process. Measurements and SEM inspection were carried out on sample chips and a list of possible defects has been identified and described in detail. We have also developed test-structures for detection of the top-ranking defects, which will be used for yield analysis and the determination of the probability distribution of faults in the process. A test chip has been designed, based on the results of this study, and certain types of defects were introduced in the design to study the behavior of faulty junctions and interconnections

    Testability enhancement of a basic set of CMOS cells

    Get PDF
    Testing should be evaluated as the ability of the test patterns to cover realistic faults, and high quality IC products demand high quality testing. We use a test strategy based on physical design for testability (to discover both open and short faults, which are difficult or even impossible to detect). Consequentially, layout level design for testability (LLDFT) rules have been developed, which prevent the faults, or at least reduce the chance of their appearing. The main purpose of this work is to apply a practical set of LLDFT rules to the library cells designed by the Centre Nacional de Microelectrònica (CNM) and obtain a highly testable cell library. The main results of the application of the LLDFT rules (area overheads and performance degradation) are summarized and the results are significant since IC design is highly repetitive; a small effort to improve cell layout can bring about great improvement in design
    • …
    corecore