17,338 research outputs found

    Towards Automated Performance Bug Identification in Python

    Full text link
    Context: Software performance is a critical non-functional requirement, appearing in many fields such as mission critical applications, financial, and real time systems. In this work we focused on early detection of performance bugs; our software under study was a real time system used in the advertisement/marketing domain. Goal: Find a simple and easy to implement solution, predicting performance bugs. Method: We built several models using four machine learning methods, commonly used for defect prediction: C4.5 Decision Trees, Na\"{\i}ve Bayes, Bayesian Networks, and Logistic Regression. Results: Our empirical results show that a C4.5 model, using lines of code changed, file's age and size as explanatory variables, can be used to predict performance bugs (recall=0.73, accuracy=0.85, and precision=0.96). We show that reducing the number of changes delivered on a commit, can decrease the chance of performance bug injection. Conclusions: We believe that our approach can help practitioners to eliminate performance bugs early in the development cycle. Our results are also of interest to theoreticians, establishing a link between functional bugs and (non-functional) performance bugs, and explicitly showing that attributes used for prediction of functional bugs can be used for prediction of performance bugs

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Implementing total productive maintenance in Nigerian manufacturing industries

    Get PDF
    Remarkable improvements have occurred recently in the maintenance management of physical assets and productive systems, so that less wastages of energy and resources occur. The requirement for optimal preventive maintenance using, for instance, justin-time (JIT) and total quality-management (TQM) techniques has given rise to whathas been called the total productive-maintenance (TPM) approach. This study explores the ways in which Nigerian manufacturing industries can implement TPM as a strategy and culture for improving its performance and suggests self-auditing and bench-marking as desirable prerequisites before TPM implementation

    Benefits and Challenges of Model-based Software Engineering: Lessons Learned based on Qualitative and Quantitative Findings

    Get PDF
    Even though Model-based Software Engineering (MBSwE) techniques and Autogenerated Code (AGC) have been increasingly used to produce complex software systems, there is only anecdotal knowledge about the state-of-thepractice. Furthermore, there is a lack of empirical studies that explore the potential quality improvements due to the use of these techniques. This paper presents in-depth qualitative findings about development and Software Assurance (SWA) practices and detailed quantitative analysis of software bug reports of a NASA mission that used MBSwE and AGC. The missions flight software is a combination of handwritten code and AGC developed by two different approaches: one based on state chart models (AGC-M) and another on specification dictionaries (AGC-D). The empirical analysis of fault proneness is based on 380 closed bug reports created by software developers. Our main findings include: (1) MBSwE and AGC provide some benefits, but also impose challenges. (2) SWA done only at a model level is not sufficient. AGC code should also be tested and the models and AGC should always be kept in-sync. AGC must not be changed manually. (3) Fixes made to address an individual bug report were spread both across multiple modules and across multiple files. On average, for each bug report 1.4 modules, that is, 3.4 files were fixed. (4) Most bug reports led to changes in more than one type of file. The majority of changes to auto-generated source code files were made in conjunction to changes in either file with state chart models or XML files derived from dictionaries. (5) For newly developed files, AGC-M and handwritten code were of similar quality, while AGC-D files were the least fault prone
    corecore