117 research outputs found

    Nondestructive Testing (NDT)

    Get PDF
    The aim of this book is to collect the newest contributions by eminent authors in the field of NDT-SHM, both at the material and structure scale. It therefore provides novel insight at experimental and numerical levels on the application of NDT to a wide variety of materials (concrete, steel, masonry, composites, etc.) in the field of Civil Engineering and Architecture

    Application of machine learning algorithm in the sheet metal industry : an exploratory case study

    Get PDF
    This study solved a practical problem in a case in the sheet metal industry using machine learning and deep learning algorithms. The problem in the case company was related to detecting the minimum gaps between components, which were produced after the punching operation of a metal sheet. Due to the narrow gaps between the components, an automated sheer machine could not grip the rest of the sheet skeleton properly after the punching operation. This resulted in some of the scraped sheet on the worktable being left behind, which needed a human operator to intervene. This caused an extra trigger to the production line that resulted in a break in production. To solve this critical problem, the relevant images of the components and the gaps between them were analyzed using machine learning and deep learning techniques. The outcome of this study contributed to eliminating the production bottleneck by optimizing the gaps between the punched components. This optimization process facilitated the easy and safe movement of the gripper machine and contributed to minimizing the sheet waste.© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.fi=vertaisarvioitu|en=peerReviewed

    Prospect of using machine learning-based microwave nondestructive testing technique for corrosion under insulation: A review

    Get PDF
    Corrosion under insulations is described as localized corrosion that forms because of moisture penetration through the insulation materials or due to contaminants’ presence within the insulation material. The traditional non-destructive inspection techniques operating at a low frequency require removing insulation material to enable inspection, due to poor signal penetration. Several high-frequency inspection techniques such as the microwave technique have shown successful inspection in detecting the defect under insulations, without removing the insulations. However, the microwave technique faces several challenges such as poor spatial imaging, large errors in terms of defect size and depth owing to stand-off distance variations, optimal frequency point selection, and the presence of the outlier in microwave measurement data. The microwave technique in conjunction with machine learning approaches has tremendous potential and viability for assessing corrosion under insulation. This paper provides an in-depth review of non-destructive techniques for assessing corrosion under insulation, as well as the possibility of using machine learning approaches in microwave techniques in comparison to other conventional techniques

    Surface and Sub-Surface Analyses for Bridge Inspection

    Get PDF
    The development of bridge inspection solutions has been discussed in the recent past. In this dissertation, significant development and improvement on the state-of-the-art in the field of bridge inspection using multiple sensors (e.g. ground penetrating radar (GPR) and visual sensor) has been proposed. In the first part of this research (discussed in chapter 3), the focus is towards developing effective and novel methods for rebar detection and localization for sub-surface bridge inspection of steel rebars. The data has been collected using Ground Penetrating Radar (GPR) sensor on real bridge decks. In this regard, a number of different approaches have been successively developed that continue to improve the state-of-the-art in this particular research area. The second part (discussed in chapter 4) of this research deals with the development of an automated system for steel bridge defect detection system using a Multi-Directional Bicycle Robot. The training data has been acquired from actual bridges in Vietnam and validation is performed on data collected using Bicycle Robot from actual bridge located in Highway-80, Lovelock, Nevada, USA. A number of different proposed methods have been discussed in chapter 4. The final chapter of the dissertation will conclude the findings from the different parts and discuss ways of improving on the existing works in the near future

    The Public Service Media and Public Service Internet Manifesto

    Get PDF
    This book presents the collectively authored Public Service Media and Public Service Internet Manifesto and accompanying materials.The Internet and the media landscape are broken. The dominant commercial Internet platforms endanger democracy. They have created a communications landscape overwhelmed by surveillance, advertising, fake news, hate speech, conspiracy theories, and algorithmic politics. Commercial Internet platforms have harmed citizens, users, everyday life, and society. Democracy and digital democracy require Public Service Media. A democracy-enhancing Internet requires Public Service Media becoming Public Service Internet platforms – an Internet of the public, by the public, and for the public; an Internet that advances instead of threatens democracy and the public sphere. The Public Service Internet is based on Internet platforms operated by a variety of Public Service Media, taking the public service remit into the digital age. The Public Service Internet provides opportunities for public debate, participation, and the advancement of social cohesion. Accompanying the Manifesto are materials that informed its creation: Christian Fuchs’ report of the results of the Public Service Media/Internet Survey, the written version of Graham Murdock’s online talk on public service media today, and a summary of an ecomitee.com discussion of the Manifesto’s foundations

    Structural Health Monitoring Damage Detection Systems for Aerospace

    Get PDF
    This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation

    Structural health monitoring damage detection systems for aerospace

    Get PDF

    Proceedings of Abstracts, School of Physics, Engineering and Computer Science Research Conference 2022

    Get PDF
    © 2022 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Plenary by Prof. Timothy Foat, ‘Indoor dispersion at Dstl and its recent application to COVID-19 transmission’ is © Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected] present proceedings record the abstracts submitted and accepted for presentation at SPECS 2022, the second edition of the School of Physics, Engineering and Computer Science Research Conference that took place online, the 12th April 2022
    • …
    corecore