346 research outputs found

    Tagged repair techniques for defect tolerance in hybrid nano/CMOS architecture

    No full text
    We propose two new repair techniques for hybrid nano/CMOS computing architecture with lookup table based Boolean logic. Our proposed techniques use tagging mechanism to provide high level of defect tolerance and we present theoretical equations to predict the repair capability including an estimate of the repair cost. The repair techniques are efficient in utilization of spare units and capable of targeting upto 20% defect rates, which is higher than recently reported repair techniques

    Nonphotolithographic nanoscale memory density prospects

    Get PDF
    Technologies are now emerging to construct molecular-scale electronic wires and switches using bottom-up self-assembly. This opens the possibility of constructing nanoscale circuits and memories where active devices are just a few nanometers square and wire pitches may be on the order of ten nanometers. The features can be defined at this scale without using photolithography. The available assembly techniques have relatively high defect rates compared to conventional lithographic integrated circuits and can only produce very regular structures. Nonetheless, with proper memory organization, it is reasonable to expect these technologies to provide memory densities in excess of 10/sup 11/ b/cm/sup 2/ with modest active power requirements under 0.6 W/Tb/s for random read operations

    On Finding a Defect-free Component in Nanoscale Crossbar Circuits

    Get PDF
    AbstractWe propose a technique for the analysis of manufacturing yield of nano-crossbar architectures for different values of defect percentage and crossbar-size. We provide an estimate of the minimum-size crossbar to be fabricated wherein a defect-free crossbar of a given size can always be found with a guaranteed yield. Our technique is based on logical merging of two defective rows (or two columns) that emulate a defect-free row (or column). Experimental results show that the proposed method provides higher defect-tolerance compared to that of previous techniques

    Array-based architecture for FET-based, nanoscale electronics

    Get PDF
    Advances in our basic scientific understanding at the molecular and atomic level place us on the verge of engineering designer structures with key features at the single nanometer scale. This offers us the opportunity to design computing systems at what may be the ultimate limits on device size. At this scale, we are faced with new challenges and a new cost structure which motivates different computing architectures than we found efficient and appropriate in conventional very large scale integration (VLSI). We sketch a basic architecture for nanoscale electronics based on carbon nanotubes, silicon nanowires, and nano-scale FETs. This architecture can provide universal logic functionality with all logic and signal restoration operating at the nanoscale. The key properties of this architecture are its minimalism, defect tolerance, and compatibility with emerging bottom-up nanoscale fabrication techniques. The architecture further supports micro-to-nanoscale interfacing for communication with conventional integrated circuits and bootstrap loading

    Inherited Redundancy and Configurability Utilization for Repairing Nanowire Crossbars with Clustered Defects

    Get PDF
    With the recent development of nanoscale materials and assembly techniques, it is envisioned to build high-density reconfigurable systems which have never been achieved by the photolithography. Various reconfigurable architectures have been proposed based on nanowire crossbar structure as the primitive building block. Unfortunately, high-density systems consisting of nanometer-scale elements are likely to have many imperfections and variations; thus, defect-tolerance is considered as one of the most exigent challenges. In this paper, we evaluate three different logic mapping algorithms with defect avoidance to circumvent clustered defective crosspoints in nanowire reconfigurable crossbar architectures. The effectiveness of inherited redundancy and configurability utilization is demonstrated through extensive parametric simulations

    Advances in Nanowire-Based Computing Architectures

    Get PDF

    Fault Secure Encoder and Decoder for NanoMemory Applications

    Get PDF
    Memory cells have been protected from soft errors for more than a decade; due to the increase in soft error rate in logic circuits, the encoder and decoder circuitry around the memory blocks have become susceptible to soft errors as well and must also be protected. We introduce a new approach to design fault-secure encoder and decoder circuitry for memory designs. The key novel contribution of this paper is identifying and defining a new class of error-correcting codes whose redundancy makes the design of fault-secure detectors (FSD) particularly simple. We further quantify the importance of protecting encoder and decoder circuitry against transient errors, illustrating a scenario where the system failure rate (FIT) is dominated by the failure rate of the encoder and decoder. We prove that Euclidean geometry low-density parity-check (EG-LDPC) codes have the fault-secure detector capability. Using some of the smaller EG-LDPC codes, we can tolerate bit or nanowire defect rates of 10% and fault rates of 10^(-18) upsets/device/cycle, achieving a FIT rate at or below one for the entire memory system and a memory density of 10^(11) bit/cm^2 with nanowire pitch of 10 nm for memory blocks of 10 Mb or larger. Larger EG-LDPC codes can achieve even higher reliability and lower area overhead

    CMOL: Second Life for Silicon?

    Get PDF
    This report is a brief review of the recent work on architectures for the prospective hybrid CMOS/nanowire/ nanodevice ("CMOL") circuits including digital memories, reconfigurable Boolean-logic circuits, and mixed-signal neuromorphic networks. The basic idea of CMOL circuits is to combine the advantages of CMOS technology (including its flexibility and high fabrication yield) with the extremely high potential density of molecular-scale two-terminal nanodevices. Relatively large critical dimensions of CMOS components and the "bottom-up" approach to nanodevice fabrication may keep CMOL fabrication costs at affordable level. At the same time, the density of active devices in CMOL circuits may be as high as 1012 cm2 and that they may provide an unparalleled information processing performance, up to 1020 operations per cm2 per second, at manageable power consumption.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions
    corecore