211 research outputs found

    A Polynomial Reduction from ASPDA to ASP

    Full text link
    Abstract. ASPDA is a framework for expressing defeasibility in Answer Set Programs via so-called argumentation theories, proposed by Wan, Kifer, and Grosof in [2]. The authors describe a reduction from ASPDA to plain Answer Set Programming, which however exponentially inflate programs. In this note, we present an alternative reduction, which does not suffer from this problem. As a side-effect, complexity results for ASPDA are established.

    EMIL: Extracting Meaning from Inconsistent Language

    Get PDF
    Developments in formal and computational theories of argumentation reason with inconsistency. Developments in Computational Linguistics extract arguments from large textual corpora. Both developments head in the direction of automated processing and reasoning with inconsistent, linguistic knowledge so as to explain and justify arguments in a humanly accessible form. Yet, there is a gap between the coarse-grained, semi-structured knowledge-bases of computational theories of argumentation and fine-grained, highly-structured inferences from knowledge-bases derived from natural language. We identify several subproblems which must be addressed in order to bridge the gap. We provide a direct semantics for argumentation. It has attractive properties in terms of expressivity and complexity, enables reasoning by cases, and can be more highly structured. For language processing, we work with an existing controlled natural language (CNL), which interfaces with our computational theory of argumentation; the tool processes natural language input, translates them into a form for automated inference engines, outputs argument extensions, then generates natural language statements. The key novel adaptation incorporates the defeasible expression ‘it is usual that’. This is an important, albeit incremental, step to incorporate linguistic expressions of defeasibility. Overall, the novel contribution of the paper is an integrated, end-to-end argumentation system which bridges between automated defeasible reasoning and a natural language interface. Specific novel contributions are the theory of ‘direct semantics’, motivations for our theory, results with respect to the direct semantics, an implementation, experimental results, the tie between the formalisation and the CNL, the introduction into a CNL of a natural language expression of defeasibility, and an ‘engineering’ approach to fine-grained argument analysis

    Formalisation and logical properties of the maximal ideal recursive semantics for weighted defeasible logic programming

    Get PDF
    Possibilistic defeasible logic programming (P-DeLP) is a logic programming framework which combines features from argumentation theory and logic programming, in which defeasible rules are attached with weights expressing their relative belief or preference strength. In P-DeLP,a conclusion succeeds if there exists an argument that entails the conclusion and this argument is found to be undefeated by a warrant procedure that systematically explores the universe of arguments in order to present an exhaustive synthesis of the relevant chains of pros and cons for the given conclusion. Recently, we have proposed a new warrant recursive semantics for P-DeLP, called Recursive P-DeLP (RP-DeLP for short), based on the claim that the acceptance of an argument should imply also the acceptance of all its sub-arguments which reflect the different premises on which the argument is based. This paper explores the relationship between the exhaustive dialectical analysis-based semantics of P-DeLP and the recursive-based semantics of RP-DeLP, and analyses a non-monotonic inference operator for RP-DeLP which models the expansion of a given program by adding new weighted facts associated with warranted conclusions. Given the recursive-based semantics of RP-DeLP, we have also implemented an argumentation framework for RP-DeLP that is able to compute not only the output of warranted and blocked conclusions, but also explain the reasons behind the status of each conclusion. We have developed this framework as a stand-alone application with a simple text-based input/output interface to be able to use it as part of other artificial intelligence systemsThis research was partially supported by the Spanish projects EdeTRI (TIN2012-39348-C02-01) and AT (CONSOLIDER- INGENIO 2010, CSD2007-00022)

    Abstract Argumentation

    Full text link

    Volume 59, Issue 1, 2023 Speaker & Gavel

    Get PDF
    Complete digital issue (Volume 59, issue 1, 2023) of Speaker & Gavel
    corecore