39,244 research outputs found

    Cluster-Based Optimization of Cellular Materials and Structures for Crashworthiness

    Get PDF
    The objective of this work is to establish a cluster-based optimization method for the optimal design of cellular materials and structures for crashworthiness, which involves the use of nonlinear, dynamic finite element models. The proposed method uses a cluster-based structural optimization approach consisting of four steps: conceptual design generation, clustering, metamodel-based global optimization, and cellular material design. The conceptual design is generated using structural optimization methods. K-means clustering is applied to the conceptual design to reduce the dimensional of the design space as well as define the internal architectures of the multimaterial structure. With reduced dimension space, global optimization aims to improve the crashworthiness of the structure can be performed efficiently. The cellular material design incorporates two homogenization methods, namely, energy-based homogenization for linear and nonlinear elastic material models and mean-field homogenization for (fully) nonlinear material models. The proposed methodology is demonstrated using three designs for crashworthiness that include linear, geometrically nonlinear, and nonlinear models

    Modelling Socio-Technical Transition Patterns and Pathways

    Get PDF
    We report on research that is developing a simulation model for assessing systemic innovations, or 'transitions', of societal systems towards a more sustainable development. Our overall aim is to outline design principles for models that can offer new insights into tackling persistent problems in large-scale systems, such as the European road transport system or the regional management of water resources. The systemic nature of these problems is associated with them being complex, uncertain and cutting across a number of sectors, and indicates a need for radical technological and behavioural solutions that address changes at the systems level rather than offering incremental changes within sub-systems. Model design is inspired by recent research into transitions, an emerging paradigm which provides a framework for tackling persistent problems. We use concepts from the literature on transitions to develop a prototype of a generic 'transition model'. Our prototype aims to capture different types of transition pathways, using historical examples such as the transition from horse-drawn carriages to cars or that from sailing ships to steam ships. The model combines agent-based modelling techniques and system dynamics, and includes interactions of individual agents and sub-systems, as well as cumulative effects on system structures. We show success in simulating different historical transition pathways by adapting the model's parameters and rules for each example. Finally, we discuss the improvements necessary for systematically exploring and detailing transition pathways in empirical case-study applications to current and future transitions such as the transition to a sustainable transport system in Europe.Complex Systems, Agent-Based Modelling, Social Simulation, Transitions, Transition Theory

    The 'what' and 'how' of learning in design, invited paper

    Get PDF
    Previous experiences hold a wealth of knowledge which we often take for granted and use unknowingly through our every day working lives. In design, those experiences can play a crucial role in the success or failure of a design project, having a great deal of influence on the quality, cost and development time of a product. But how can we empower computer based design systems to acquire this knowledge? How would we use such systems to support design? This paper outlines some of the work which has been carried out in applying and developing Machine Learning techniques to support the design activity; particularly in utilising previous designs and learning the design process

    Text Mining Infrastructure in R

    Get PDF
    During the last decade text mining has become a widely used discipline utilizing statistical and machine learning methods. We present the tm package which provides a framework for text mining applications within R. We give a survey on text mining facilities in R and explain how typical application tasks can be carried out using our framework. We present techniques for count-based analysis methods, text clustering, text classification and string kernels.

    A receptor-based analysis of local ecosystems in the human brain.

    Get PDF
    BackgroundAs a complex system, the brain is a self-organizing entity that depends on local interactions among cells. Its regions (anatomically defined nuclei and areas) can be conceptualized as cellular ecosystems, but the similarity of their functional profiles is poorly understood. The study used the Allen Human Brain Atlas to classify 169 brain regions into hierarchically-organized environments based on their expression of 100 G protein-coupled neurotransmitter receptors, with no a priori reference to the regions' positions in the brain's anatomy or function. The analysis was based on hierarchical clustering, and multiscale bootstrap resampling was used to estimate the reliability of detected clusters.ResultsThe study presents the first unbiased, hierarchical tree of functional environments in the human brain. The similarity of brain regions was strongly influenced by their anatomical proximity, even when they belonged to different functional systems. Generally, spatial vicinity trumped long-range projections or network connectivity. The main cluster of brain regions excluded the dentate gyrus of the hippocampus. The nuclei of the amygdala formed a cluster irrespective of their striatal or pallial origin. In its receptor profile, the hypothalamus was more closely associated with the midbrain than with the thalamus. The cerebellar cortical areas formed a tight and exclusive cluster. Most of the neocortical areas (with the exception of some occipital areas) clustered in a large, statistically well supported group that included no other brain regions.ConclusionsThis study adds a new dimension to the established classifications of brain divisions. In a single framework, they are reconsidered at multiple scales-from individual nuclei and areas to their groups to the entire brain. The analysis provides support for predictive models of brain self-organization and adaptation

    Secondary predication in Russian

    Get PDF
    The paper makes two contributions to semantic typology of secondary predicates. It provides an explanation of the fact that Russian has no resultative secondary predicates, relating this explanation to the interpretation of secondary predicates in English. And it relates depictive secondary predicates in Russian, which usually occur in the instrumental case, to other uses of the instrumental case in Russian, establishing here, too, a difference to English concerning the scope of the secondary predication phenomenon
    corecore