151 research outputs found

    Deep Learning based HEp-2 Image Classification: A Comprehensive Review

    Get PDF
    Classification of HEp-2 cell patterns plays a significant role in the indirect immunofluorescence test for identifying autoimmune diseases in the human body. Many automatic HEp-2 cell classification methods have been proposed in recent years, amongst which deep learning based methods have shown impressive performance. This paper provides a comprehensive review of the existing deep learning based HEp-2 cell image classification methods. These methods perform HEp-2 image classification at two levels, namely, cell-level and specimen-level. Both levels are covered in this review. At each level, the methods are organized with a deep network usage based taxonomy. The core idea, notable achievements, and key strengths and weaknesses of each method are critically analyzed. Furthermore, a concise review of the existing HEp-2 datasets that are commonly used in the literature is given. The paper ends with a discussion on novel opportunities and future research directions in this field. It is hoped that this paper would provide readers with a thorough reference of this novel, challenging, and thriving field.Comment: Published in Medical Image Analysi

    Deep Active Learning for Automatic Mitotic Cell Detection on HEp-2 Specimen Medical Images

    Get PDF
    Identifying Human Epithelial Type 2 (HEp-2) mitotic cells is a crucial procedure in anti-nuclear antibodies (ANAs) testing, which is the standard protocol for detecting connective tissue diseases (CTD). Due to the low throughput and labor-subjectivity of the ANAs' manual screening test, there is a need to develop a reliable HEp-2 computer-aided diagnosis (CAD) system. The automatic detection of mitotic cells from the microscopic HEp-2 specimen images is an essential step to support the diagnosis process and enhance the throughput of this test. This work proposes a deep active learning (DAL) approach to overcoming the cell labeling challenge. Moreover, deep learning detectors are tailored to automatically identify the mitotic cells directly in the entire microscopic HEp-2 specimen images, avoiding the segmentation step. The proposed framework is validated using the I3A Task-2 dataset over 5-fold cross-validation trials. Using the YOLO predictor, promising mitotic cell prediction results are achieved with an average of 90.011% recall, 88.307% precision, and 81.531% mAP. Whereas, average scores of 86.986% recall, 85.282% precision, and 78.506% mAP are obtained using the Faster R-CNN predictor. Employing the DAL method over four labeling rounds effectively enhances the accuracy of the data annotation, and hence, improves the prediction performance. The proposed framework could be practically applicable to support medical personnel in making rapid and accurate decisions about the mitotic cells' existence

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Supporting Scientific Research Through Machine and Deep Learning: Fluorescence Microscopy and Operational Intelligence Use Cases

    Get PDF
    Although the debate of what data science is has a long history and has not reached a complete consensus yet, Data Science can be summarized as the process of learning from data. Guided by the above vision, this thesis presents two independent data science projects developed in the scope of multidisciplinary applied research. The first part analyzes fluorescence microscopy images typically produced in life science experiments, where the objective is to count how many marked neuronal cells are present in each image. Aiming to automate the task for supporting research in the area, we propose a neural network architecture tuned specifically for this use case, cell ResUnet (c-ResUnet), and discuss the impact of alternative training strategies in overcoming particular challenges of our data. The approach provides good results in terms of both detection and counting, showing performance comparable to the interpretation of human operators. As a meaningful addition, we release the pre-trained model and the Fluorescent Neuronal Cells dataset collecting pixel-level annotations of where neuronal cells are located. In this way, we hope to help future research in the area and foster innovative methodologies for tackling similar problems. The second part deals with the problem of distributed data management in the context of LHC experiments, with a focus on supporting ATLAS operations concerning data transfer failures. In particular, we analyze error messages produced by failed transfers and propose a Machine Learning pipeline that leverages the word2vec language model and K-means clustering. This provides groups of similar errors that are presented to human operators as suggestions of potential issues to investigate. The approach is demonstrated on one full day of data, showing promising ability in understanding the message content and providing meaningful groupings, in line with previously reported incidents by human operators

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise

    Development of Optical Devices for Digital Medicine

    Get PDF
    Department of Biomedical EngineeringAdvances of technology have made a revolution that interconnects industrial devices and fuses the boundaries of digital, physical and biological spaces. These technologies such as cloud computing, 3D printing technology, big data, internet of things (IOT), artificial intelligence (AI), and maturity of system integrations have been improved every year, changing our daily life quickly in intelligent and convenient ways. In this days, these explosions of technology, changing the way we live and think, is referred to 4th industrial revolution. As we know, every industry is affected by the new waves of technologies, digitalization and connectivity, and the biomedical or medical field is no exception. Healthcare fields have benefited mostly from recent technical improvements, revolutionizing the medical systems in many terms in cost-effective ways. Particularly, ???digital medicine??? has been recently came into the limelight as one of the uprising fields. In digital medicine, traditional medical devices and diagnostic programs have become miniaturized, digitalized, and automated. As taking advantages of digital medicine, specific fields related to digital pathology, point-of-care (POC) diagnostics, and application of deep learning or machine learning technologies have shown the great potentials not only in biomedical academia but also in the revenues of their markets. It allows to connect devices, hospital equipment, and to accelerate efficiencies in health service such as diagnosis, and to reduce the cost of services. Moreover, interconnection between advanced technologies has been improved the access of healthcare to the places where hospital or medical services are limited. Furthermore, artificial intelligence has shown promising results related to disease screening especially using medical images. Although fields in digital medicine are prospering, still there are limitations that needs to be overcome in order to provide further advanced health services to patients in the various situations. In digital pathology, improvements of microscopic technologies, internets, and storage capabilities have reduced the time-consuming processes. The simple transformation of microscopic image to digital have successfully alternated many limitations in the analogue histopathology workflow to efficient and cost saving ways. However, tissue staining is currently referred as one of the bottleneck that makes workflow still lengthy, labor-intensive, and costly. In the POC diagnostic fields, various digitalized portable smartphone-based diagnostic devices have been introduced as alternatives to conventional medical services. These devices have provided the quality assurance of diagnostics by taking advantages of sharing, and quantitative analysis of digital information. However, most of these works have been focused on replacing diagnostic process which mostly done in laboratory settings. As medical imaging devices and trained clinicians or practitioners are limited, there are also high demands on clinical imaging-based diagnostics in developing countries. In this thesis, computational microscope using patterned NIR illumination was developed for label-free quantitative differential phase tissue imaging to bypass the staining process of the pathology workflow. This system overcame the limitations found in the conventional quantitative differential phase contrast in a LED array microscope, allowing to captured light scattering and absorbing specimen while maintaining weak object approximation. Moreover, portable endoscope system was developed integrating the additive production technologies (3D printing), ICT, and optics for POC diagnostics. This innovative POC endoscope demonstrated comparable imaging capability to that of commercialized clinical endoscope system. Furthermore, deep learning and machine learning models have been trained and applied to each devices, respectively. Generative adversarial network (GAN) was applied to our NIR-based QPI system to virtually stain the label-free QPI which look comparable to image that is captured from bright field microscope using labeled tissue. Lastly, POC automated cervical cancer screening system was developed utilizing smartphone-based endoscope system as well as training the machine learning algorithm. 3-5% of acetic acid was applied to the suspicious lesion and its reaction was captured before and after application using smartphone endoscope. This screening system enables to extract the features of cancers and informs the possibility of cancer from endoscopic images.clos

    Mathematical Modelling and Machine Learning Methods for Bioinformatics and Data Science Applications

    Get PDF
    Mathematical modeling is routinely used in physical and engineering sciences to help understand complex systems and optimize industrial processes. Mathematical modeling differs from Artificial Intelligence because it does not exclusively use the collected data to describe an industrial phenomenon or process, but it is based on fundamental laws of physics or engineering that lead to systems of equations able to represent all the variables that characterize the process. Conversely, Machine Learning methods require a large amount of data to find solutions, remaining detached from the problem that generated them and trying to infer the behavior of the object, material or process to be examined from observed samples. Mathematics allows us to formulate complex models with effectiveness and creativity, describing nature and physics. Together with the potential of Artificial Intelligence and data collection techniques, a new way of dealing with practical problems is possible. The insertion of the equations deriving from the physical world in the data-driven models can in fact greatly enrich the information content of the sampled data, allowing to simulate very complex phenomena, with drastically reduced calculation times. Combined approaches will constitute a breakthrough in cutting-edge applications, providing precise and reliable tools for the prediction of phenomena in biological macro/microsystems, for biotechnological applications and for medical diagnostics, particularly in the field of precision medicine

    Methods for analyzing the influence of molecular dynamics on neuronal activity

    Get PDF
    Magdeburg, Univ., Fak. für Informatik, Diss., 2015von Stefan Sokol

    Multimodal-nonlinear-optical-microspectroscopy for biological and diagnostic applications

    Get PDF
    Multimodal non-linear imaging techniques provide non-invasive and potentially in vivo means to investigate tissue with cellular resolution. A particularly promising approach that has garnered attention as of late is the combination of coherent antiStokes Raman scattering (CARS), second harmonic generation (SHG) and two photon excited autofluorescence (TPEF) microscopy. In the first section of this thesis, the diagnostic potential of multimodal non-linear imaging has been demonstrated in the case of head and neck squamous cell carcinoma. The second part of this thesis investigates the feasibility of CARS microscopy for imaging intense bands in the finger-print region (800-1800 cm 1) wherein the presence of multiple overlapping peaks and interference with non-resonant background present challenges. Specifically, the emphasis is on imaging the prominent peaks arising from conjugated C=C double bonds in retinol, tretinoin, β-carotene, and various microalgal pigments. The first CARS fingerprint imaging application in the thesis is concerned with the vitamin A content of liver tissue. Analogously, in a uni-cellular application, CARS has been employed to image carotenoids in the diatoms D. brightwellii and S. turris. As part of the effort in transferring multimodal microscopic technologies to the enduser, the third part of the thesis examines two beam excitation and demultiplexed detection as a means of doubling the speed of laser scanning microscopes based on compact fiber laser sources. Another area of improvement explored is the resolution of the CARS microscopic setup wherein, based on results from numerical studies, a Bessel like beam was employed as one of the excitation arms in the setup to enhance lateral resolution
    corecore