43 research outputs found

    A survey on vehicular communication for cooperative truck platooning application

    Get PDF
    Platooning is an application where a group of vehicles move one after each other in close proximity, acting jointly as a single physical system. The scope of platooning is to improve safety, reduce fuel consumption, and increase road use efficiency. Even if conceived several decades ago as a concept, based on the new progress in automation and vehicular networking platooning has attracted particular attention in the latest years and is expected to become of common implementation in the next future, at least for trucks.The platoon system is the result of a combination of multiple disciplines, from transportation, to automation, to electronics, to telecommunications. In this survey, we consider the platooning, and more specifically the platooning of trucks, from the point of view of wireless communications. Wireless communications are indeed a key element, since they allow the information to propagate within the convoy with an almost negligible delay and really making all vehicles acting as one. Scope of this paper is to present a comprehensive survey on connected vehicles for the platooning application, starting with an overview of the projects that are driving the development of this technology, followed by a brief overview of the current and upcoming vehicular networking architecture and standards, by a review of the main open issues related to wireless communications applied to platooning, and a discussion of security threats and privacy concerns. The survey will conclude with a discussion of the main areas that we consider still open and that can drive future research directions.(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    6G for Vehicle-to-Everything (V2X) Communications: Enabling Technologies, Challenges, and Opportunities

    Get PDF
    We are on the cusp of a new era of connected autonomous vehicles with unprecedented user experiences, tremendously improved road safety and air quality, highly diverse transportation environments and use cases, as well as a plethora of advanced applications. Realizing this grand vision requires a significantly enhanced vehicle-to-everything (V2X) communication network which should be extremely intelligent and capable of concurrently supporting hyper-fast, ultra-reliable, and low-latency massive information exchange. It is anticipated that the sixth-generation (6G) communication systems will fulfill these requirements of the next-generation V2X. In this article, we outline a series of key enabling technologies from a range of domains, such as new materials, algorithms, and system architectures. Aiming for truly intelligent transportation systems, we envision that machine learning will play an instrumental role for advanced vehicular communication and networking. To this end, we provide an overview on the recent advances of machine learning in 6G vehicular networks. To stimulate future research in this area, we discuss the strength, open challenges, maturity, and enhancing areas of these technologies

    Multi-Technology Cooperative Driving: An Analysis Based on PLEXE

    Get PDF
    Cooperative Driving requires ultra-reliable communications, and it is now clear that no single technology will ever be able to satisfy such stringent requirements, if only because active jamming can kill (almost) any wireless technology. Cooperative driving with multiple communication technologies which complement each other opens new spaces for research and development, but also poses several challenges. The work we present tackles the fallback and recovery mechanisms that the longitudinal controlling system of a platoon of vehicles can implement as a distributed system with multiple communication interfaces. We present a protocol and procedure to correctly compute the safe transition between different controlling algorithms, down to autonomous (or manual) driving when no communication is possible. To empower the study, we also develop a new version of PLEXE, which is an integral part of this contribution as the only Open Source, free simulation tool that enables the study of such systems with a modular approach, and that we deem offers the community the possibility of boosting research in this field. The results we present demonstrate the feasibility of safe fallback, but also highlight that such complex systems require careful design choices, as naive approaches can lead to instabilities or even collisions, and that such design can only be done with appropriate in-silico experiments

    6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities

    Get PDF
    We are on the cusp of a new era of connected autonomous vehicles with unprecedented user experiences, tremendously improved road safety and air quality, highly diverse transportation environments and use cases, and a plethora of advanced applications. Realizing this grand vision requires a significantly enhanced vehicle-to-everything (V2X) communication network that should be extremely intelligent and capable of concurrently supporting hyperfast, ultrareliable, and low-latency massive information exchange. It is anticipated that the sixth-generation (6G) communication systems will fulfill these requirements of the next-generation V2X. In this article, we outline a series of key enabling technologies from a range of domains, such as new materials, algorithms, and system architectures. Aiming for truly intelligent transportation systems, we envision that machine learning (ML) will play an instrumental role in advanced vehicular communication and networking. To this end, we provide an overview of the recent advances of ML in 6G vehicular networks. To stimulate future research in this area, we discuss the strength, open challenges, maturity, and enhancing areas of these technologies

    Towards the simulation of cooperative perception applications by leveraging distributed sensing infrastructures

    Get PDF
    With the rapid development of Automated Vehicles (AV), the boundaries of their function alities are being pushed and new challenges are being imposed. In increasingly complex and dynamic environments, it is fundamental to rely on more powerful onboard sensors and usually AI. However, there are limitations to this approach. As AVs are increasingly being integrated in several industries, expectations regarding their cooperation ability is growing, and vehicle-centric approaches to sensing and reasoning, become hard to integrate. The proposed approach is to extend perception to the environment, i.e. outside of the vehicle, by making it smarter, via the deployment of wireless sensors and actuators. This will vastly improve the perception capabilities in dynamic and unpredictable scenarios and often in a cheaper way, relying mostly in the use of lower cost sensors and embedded devices, which rely on their scale deployment instead of centralized sensing abilities. Consequently, to support the development and deployment of such cooperation actions in a seamless way, we require the usage of co-simulation frameworks, that can encompass multiple perspectives of control and communications for the AVs, the wireless sensors and actuators and other actors in the environment. In this work, we rely on ROS2 and micro-ROS as the underlying technologies for integrating several simulation tools, to construct a framework, capable of supporting the development, test and validation of such smart, cooperative environments. This endeavor was undertaken by building upon an existing simulation framework known as AuNa. We extended its capabilities to facilitate the simulation of cooperative scenarios by incorporat ing external sensors placed within the environment rather than just relying on vehicle-based sensors. Moreover, we devised a cooperative perception approach within this framework, showcasing its substantial potential and effectiveness. This will enable the demonstration of multiple cooperation scenarios and also ease the deployment phase by relying on the same software architecture.Com o rápido desenvolvimento dos Veículos Autónomos (AV), os limites das suas funcional idades estão a ser alcançados e novos desafios estão a surgir. Em ambientes complexos e dinâmicos, é fundamental a utilização de sensores de alta capacidade e, na maioria dos casos, inteligência artificial. Mas existem limitações nesta abordagem. Como os AVs estão a ser integrados em várias indústrias, as expectativas quanto à sua capacidade de cooperação estão a aumentar, e as abordagens de perceção e raciocínio centradas no veículo, tornam-se difíceis de integrar. A abordagem proposta consiste em extender a perceção para o ambiente, isto é, fora do veículo, tornando-a inteligente, através do uso de sensores e atuadores wireless. Isto irá melhorar as capacidades de perceção em cenários dinâmicos e imprevisíveis, reduzindo o custo, pois a abordagem será baseada no uso de sensores low-cost e sistemas embebidos, que dependem da sua implementação em grande escala em vez da capacidade de perceção centralizada. Consequentemente, para apoiar o desenvolvimento e implementação destas ações em cooperação, é necessária a utilização de frameworks de co-simulação, que abranjam múltiplas perspetivas de controlo e comunicação para os AVs, sensores e atuadores wireless, e outros atores no ambiente. Neste trabalho será utilizado ROS2 e micro-ROS como as tecnologias subjacentes para a integração das ferramentas de simulação, de modo a construir uma framework capaz de apoiar o desenvolvimento, teste e validação de ambientes inteligentes e cooperativos. Esta tarefa foi realizada com base numa framework de simulação denominada AuNa. Foram expandidas as suas capacidades para facilitar a simulação de cenários cooperativos através da incorporação de sensores externos colocados no ambiente, em vez de depender apenas de sensores montados nos veículos. Além disso, concebemos uma abordagem de perceção cooperativa usando a framework, demonstrando o seu potencial e eficácia. Isto irá permitir a demonstração de múltiplos cenários de cooperação e também facilitar a fase de implementação, utilizando a mesma arquitetura de software

    Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research

    Get PDF
    Emerging applications such as Internet of Everything, Holographic Telepresence, collaborative robots, and space and deep-sea tourism are already highlighting the limitations of existing fifth-generation (5G) mobile networks. These limitations are in terms of data-rate, latency, reliability, availability, processing, connection density and global coverage, spanning over ground, underwater and space. The sixth-generation (6G) of mobile networks are expected to burgeon in the coming decade to address these limitations. The development of 6G vision, applications, technologies and standards has already become a popular research theme in academia and the industry. In this paper, we provide a comprehensive survey of the current developments towards 6G. We highlight the societal and technological trends that initiate the drive towards 6G. Emerging applications to realize the demands raised by 6G driving trends are discussed subsequently. We also elaborate the requirements that are necessary to realize the 6G applications. Then we present the key enabling technologies in detail. We also outline current research projects and activities including standardization efforts towards the development of 6G. Finally, we summarize lessons learned from state-of-the-art research and discuss technical challenges that would shed a new light on future research directions towards 6G

    Cooperative Relative Positioning for Vehicular Environments

    Get PDF
    Fahrerassistenzsysteme sind ein wesentlicher Baustein zur Steigerung der Sicherheit im Straßenverkehr. Vor allem sicherheitsrelevante Applikationen benötigen eine genaue Information über den Ort und der Geschwindigkeit der Fahrzeuge in der unmittelbaren Umgebung, um mögliche Gefahrensituationen vorherzusehen, den Fahrer zu warnen oder eigenständig einzugreifen. Repräsentative Beispiele für Assistenzsysteme, die auf eine genaue, kontinuierliche und zuverlässige Relativpositionierung anderer Verkehrsteilnehmer angewiesen sind, sind Notbremsassitenten, Spurwechselassitenten und Abstandsregeltempomate. Moderne Lösungsansätze benutzen Umfeldsensorik wie zum Beispiel Radar, Laser Scanner oder Kameras, um die Position benachbarter Fahrzeuge zu schätzen. Dieser Sensorsysteme gemeinsame Nachteile sind deren limitierte Erfassungsreichweite und die Notwendigkeit einer direkten und nicht blockierten Sichtlinie zum Nachbarfahrzeug. Kooperative Lösungen basierend auf einer Fahrzeug-zu-Fahrzeug Kommunikation können die eigene Wahrnehmungsreichweite erhöhen, in dem Positionsinformationen zwischen den Verkehrsteilnehmern ausgetauscht werden. In dieser Dissertation soll die Möglichkeit der kooperativen Relativpositionierung von Straßenfahrzeugen mittels Fahrzeug-zu-Fahrzeug Kommunikation auf ihre Genauigkeit, Kontinuität und Robustheit untersucht werden. Anstatt die in jedem Fahrzeug unabhängig ermittelte Position zu übertragen, werden in einem neuartigem Ansatz GNSS-Rohdaten, wie Pseudoranges und Doppler-Messungen, ausgetauscht. Dies hat den Vorteil, dass sich korrelierte Fehler in beiden Fahrzeugen potentiell herauskürzen. Dies wird in dieser Dissertation mathematisch untersucht, simulativ modelliert und experimentell verifiziert. Um die Zuverlässigkeit und Kontinuität auch in "gestörten" Umgebungen zu erhöhen, werden in einem Bayesischen Filter die GNSS-Rohdaten mit Inertialsensormessungen aus zwei Fahrzeugen fusioniert. Die Validierung des Sensorfusionsansatzes wurde im Rahmen dieser Dissertation in einem Verkehrs- sowie in einem GNSS-Simulator durchgeführt. Zur experimentellen Untersuchung wurden zwei Testfahrzeuge mit den verschiedenen Sensoren ausgestattet und Messungen in diversen Umgebungen gefahren. In dieser Arbeit wird gezeigt, dass auf Autobahnen, die Relativposition eines anderen Fahrzeugs mit einer Genauigkeit von unter einem Meter kontinuierlich geschätzt werden kann. Eine hohe Zuverlässigkeit in der longitudinalen und lateralen Richtung können erzielt werden und das System erweist 90% der Zeit eine Unsicherheit unter 2.5m. In ländlichen Umgebungen wächst die Unsicherheit in der relativen Position. Mit Hilfe der on-board Sensoren können Fehler bei der Fahrt durch Wälder und Dörfer korrekt gestützt werden. In städtischen Umgebungen werden die Limitierungen des Systems deutlich. Durch die erschwerte Schätzung der Fahrtrichtung des Ego-Fahrzeugs ist vor Allem die longitudinale Komponente der Relativen Position in städtischen Umgebungen stark verfälscht.Advanced driver assistance systems play an important role in increasing the safety on today's roads. The knowledge about the other vehicles' positions is a fundamental prerequisite for numerous safety critical applications, making it possible to foresee critical situations, warn the driver or autonomously intervene. Forward collision avoidance systems, lane change assistants or adaptive cruise control are examples of safety relevant applications that require an accurate, continuous and reliable relative position of surrounding vehicles. Currently, the positions of surrounding vehicles is estimated by measuring the distance with e.g. radar, laser scanners or camera systems. However, all these techniques have limitations in their perception range, as all of them can only detect objects in their line-of-sight. The limited perception range of today's vehicles can be extended in future by using cooperative approaches based on Vehicle-to-Vehicle (V2V) communication. In this thesis, the capabilities of cooperative relative positioning for vehicles will be assessed in terms of its accuracy, continuity and reliability. A novel approach where Global Navigation Satellite System (GNSS) raw data is exchanged between the vehicles is presented. Vehicles use GNSS pseudorange and Doppler measurements from surrounding vehicles to estimate the relative positioning vector in a cooperative way. In this thesis, this approach is shown to outperform the absolute position subtraction as it is able to effectively cancel out common errors to both GNSS receivers. This is modeled theoretically and demonstrated empirically using simulated signals from a GNSS constellation simulator. In order to cope with GNSS outages and to have a sufficiently good relative position estimate even in strong multipath environments, a sensor fusion approach is proposed. In addition to the GNSS raw data, inertial measurements from speedometers, accelerometers and turn rate sensors from each vehicle are exchanged over V2V communication links. A Bayesian approach is applied to consider the uncertainties inherently to each of the information sources. In a dynamic Bayesian network, the temporal relationship of the relative position estimate is predicted by using relative vehicle movement models. Also real world measurements in highway, rural and urban scenarios are performed in the scope of this work to demonstrate the performance of the cooperative relative positioning approach based on sensor fusion. The results show that the relative position of another vehicle towards the ego vehicle can be estimated with sub-meter accuracy in highway scenarios. Here, good reliability and 90% availability with an uncertainty of less than 2.5m is achieved. In rural environments, drives through forests and towns are correctly bridged with the support of on-board sensors. In an urban environment, the difficult estimation of the ego vehicle heading has a mayor impact in the relative position estimate, yielding large errors in its longitudinal component

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society
    corecore