17 research outputs found

    Dynamic Feature Integration for Simultaneous Detection of Salient Object, Edge and Skeleton

    Full text link
    In this paper, we solve three low-level pixel-wise vision problems, including salient object segmentation, edge detection, and skeleton extraction, within a unified framework. We first show some similarities shared by these tasks and then demonstrate how they can be leveraged for developing a unified framework that can be trained end-to-end. In particular, we introduce a selective integration module that allows each task to dynamically choose features at different levels from the shared backbone based on its own characteristics. Furthermore, we design a task-adaptive attention module, aiming at intelligently allocating information for different tasks according to the image content priors. To evaluate the performance of our proposed network on these tasks, we conduct exhaustive experiments on multiple representative datasets. We will show that though these tasks are naturally quite different, our network can work well on all of them and even perform better than current single-purpose state-of-the-art methods. In addition, we also conduct adequate ablation analyses that provide a full understanding of the design principles of the proposed framework. To facilitate future research, source code will be released

    Mode-locking Theory for Long-Range Interaction in Artificial Neural Networks

    Full text link
    Visual long-range interaction refers to modeling dependencies between distant feature points or blocks within an image, which can significantly enhance the model's robustness. Both CNN and Transformer can establish long-range interactions through layering and patch calculations. However, the underlying mechanism of long-range interaction in visual space remains unclear. We propose the mode-locking theory as the underlying mechanism, which constrains the phase and wavelength relationship between waves to achieve mode-locked interference waveform. We verify this theory through simulation experiments and demonstrate the mode-locking pattern in real-world scene models. Our proposed theory of long-range interaction provides a comprehensive understanding of the mechanism behind this phenomenon in artificial neural networks. This theory can inspire the integration of the mode-locking pattern into models to enhance their robustness.Comment: 10 pages, 6 figure
    corecore