166 research outputs found

    A Deep Learning Reconstruction Framework for Differential Phase-Contrast Computed Tomography with Incomplete Data

    Full text link
    Differential phase-contrast computed tomography (DPC-CT) is a powerful analysis tool for soft-tissue and low-atomic-number samples. Limited by the implementation conditions, DPC-CT with incomplete projections happens quite often. Conventional reconstruction algorithms are not easy to deal with incomplete data. They are usually involved with complicated parameter selection operations, also sensitive to noise and time-consuming. In this paper, we reported a new deep learning reconstruction framework for incomplete data DPC-CT. It is the tight coupling of the deep learning neural network and DPC-CT reconstruction algorithm in the phase-contrast projection sinogram domain. The estimated result is the complete phase-contrast projection sinogram not the artifacts caused by the incomplete data. After training, this framework is determined and can reconstruct the final DPC-CT images for a given incomplete phase-contrast projection sinogram. Taking the sparse-view DPC-CT as an example, this framework has been validated and demonstrated with synthetic and experimental data sets. Embedded with DPC-CT reconstruction, this framework naturally encapsulates the physical imaging model of DPC-CT systems and is easy to be extended to deal with other challengs. This work is helpful to push the application of the state-of-the-art deep learning theory in the field of DPC-CT

    Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction

    Full text link
    The radiation dose in computed tomography (CT) examinations is harmful for patients but can be significantly reduced by intuitively decreasing the number of projection views. Reducing projection views usually leads to severe aliasing artifacts in reconstructed images. Previous deep learning (DL) techniques with sparse-view data require sparse-view/full-view CT image pairs to train the network with supervised manners. When the number of projection view changes, the DL network should be retrained with updated sparse-view/full-view CT image pairs. To relieve this limitation, we present a fully unsupervised score-based generative model in sinogram domain for sparse-view CT reconstruction. Specifically, we first train a score-based generative model on full-view sinogram data and use multi-channel strategy to form highdimensional tensor as the network input to capture their prior distribution. Then, at the inference stage, the stochastic differential equation (SDE) solver and data-consistency step were performed iteratively to achieve fullview projection. Filtered back-projection (FBP) algorithm was used to achieve the final image reconstruction. Qualitative and quantitative studies were implemented to evaluate the presented method with several CT data. Experimental results demonstrated that our method achieved comparable or better performance than the supervised learning counterparts.Comment: 11 pages, 12 figure

    Sub-volume-based Denoising Diffusion Probabilistic Model for Cone-beam CT Reconstruction from Incomplete Data

    Full text link
    Deep learning (DL) has emerged as a new approach in the field of computed tomography (CT) with many applicaitons. A primary example is CT reconstruction from incomplete data, such as sparse-view image reconstruction. However, applying DL to sparse-view cone-beam CT (CBCT) remains challenging. Many models learn the mapping from sparse-view CT images to the ground truth but often fail to achieve satisfactory performance. Incorporating sinogram data and performing dual-domain reconstruction improve image quality with artifact suppression, but a straightforward 3D implementation requires storing an entire 3D sinogram in memory and many parameters of dual-domain networks. This remains a major challenge, limiting further research, development and applications. In this paper, we propose a sub-volume-based 3D denoising diffusion probabilistic model (DDPM) for CBCT image reconstruction from down-sampled data. Our DDPM network, trained on data cubes extracted from paired fully sampled sinograms and down-sampled sinograms, is employed to inpaint down-sampled sinograms. Our method divides the entire sinogram into overlapping cubes and processes them in parallel on multiple GPUs, successfully overcoming the memory limitation. Experimental results demonstrate that our approach effectively suppresses few-view artifacts while preserving textural details faithfully
    • …
    corecore