25,419 research outputs found

    Sparse and Low-rank Modeling for Automatic Speech Recognition

    Get PDF
    This thesis deals with exploiting the low-dimensional multi-subspace structure of speech towards the goal of improving acoustic modeling for automatic speech recognition (ASR). Leveraging the parsimonious hierarchical nature of speech, we hypothesize that whenever a speech signal is measured in a high-dimensional feature space, the true class information is embedded in low-dimensional subspaces whereas noise is scattered as random high-dimensional erroneous estimations in the features. In this context, the contribution of this thesis is twofold: (i) identify sparse and low-rank modeling approaches as excellent tools for extracting the class-specific low-dimensional subspaces in speech features, and (ii) employ these tools under novel ASR frameworks to enrich the acoustic information present in the speech features towards the goal of improving ASR. Techniques developed in this thesis focus on deep neural network (DNN) based posterior features which, under the sparse and low-rank modeling approaches, unveil the underlying class-specific low-dimensional subspaces very elegantly. In this thesis, we tackle ASR tasks of varying difficulty, ranging from isolated word recognition (IWR) and connected digit recognition (CDR) to large-vocabulary continuous speech recognition (LVCSR). For IWR and CDR, we propose a novel \textit{Compressive Sensing} (CS) perspective towards ASR. Here exemplar-based speech recognition is posed as a problem of recovering sparse high-dimensional word representations from compressed low-dimensional phonetic representations. In the context of LVCSR, this thesis argues that albeit their power in representation learning, DNN based acoustic models still have room for improvement in exploiting the \textit{union of low-dimensional subspaces} structure of speech data. Therefore, this thesis proposes to enhance DNN posteriors by projecting them onto the manifolds of the underlying classes using principal component analysis (PCA) or compressive sensing based dictionaries. Projected posteriors are shown to be more accurate training targets for learning better acoustic models, resulting in improved ASR performance. The proposed approach is evaluated on both close-talk and far-field conditions, confirming the importance of sparse and low-rank modeling of speech in building a robust ASR framework. Finally, the conclusions of this thesis are further consolidated by an information theoretic analysis approach which explicitly quantifies the contribution of proposed techniques in improving ASR

    Exploiting Low-dimensional Structures to Enhance DNN Based Acoustic Modeling in Speech Recognition

    Get PDF
    We propose to model the acoustic space of deep neural network (DNN) class-conditional posterior probabilities as a union of low-dimensional subspaces. To that end, the training posteriors are used for dictionary learning and sparse coding. Sparse representation of the test posteriors using this dictionary enables projection to the space of training data. Relying on the fact that the intrinsic dimensions of the posterior subspaces are indeed very small and the matrix of all posteriors belonging to a class has a very low rank, we demonstrate how low-dimensional structures enable further enhancement of the posteriors and rectify the spurious errors due to mismatch conditions. The enhanced acoustic modeling method leads to improvements in continuous speech recognition task using hybrid DNN-HMM (hidden Markov model) framework in both clean and noisy conditions, where upto 15.4% relative reduction in word error rate (WER) is achieved

    Feature Learning from Spectrograms for Assessment of Personality Traits

    Full text link
    Several methods have recently been proposed to analyze speech and automatically infer the personality of the speaker. These methods often rely on prosodic and other hand crafted speech processing features extracted with off-the-shelf toolboxes. To achieve high accuracy, numerous features are typically extracted using complex and highly parameterized algorithms. In this paper, a new method based on feature learning and spectrogram analysis is proposed to simplify the feature extraction process while maintaining a high level of accuracy. The proposed method learns a dictionary of discriminant features from patches extracted in the spectrogram representations of training speech segments. Each speech segment is then encoded using the dictionary, and the resulting feature set is used to perform classification of personality traits. Experiments indicate that the proposed method achieves state-of-the-art results with a significant reduction in complexity when compared to the most recent reference methods. The number of features, and difficulties linked to the feature extraction process are greatly reduced as only one type of descriptors is used, for which the 6 parameters can be tuned automatically. In contrast, the simplest reference method uses 4 types of descriptors to which 6 functionals are applied, resulting in over 20 parameters to be tuned.Comment: 12 pages, 3 figure

    A Deep Representation for Invariance And Music Classification

    Get PDF
    Representations in the auditory cortex might be based on mechanisms similar to the visual ventral stream; modules for building invariance to transformations and multiple layers for compositionality and selectivity. In this paper we propose the use of such computational modules for extracting invariant and discriminative audio representations. Building on a theory of invariance in hierarchical architectures, we propose a novel, mid-level representation for acoustical signals, using the empirical distributions of projections on a set of templates and their transformations. Under the assumption that, by construction, this dictionary of templates is composed from similar classes, and samples the orbit of variance-inducing signal transformations (such as shift and scale), the resulting signature is theoretically guaranteed to be unique, invariant to transformations and stable to deformations. Modules of projection and pooling can then constitute layers of deep networks, for learning composite representations. We present the main theoretical and computational aspects of a framework for unsupervised learning of invariant audio representations, empirically evaluated on music genre classification.Comment: 5 pages, CBMM Memo No. 002, (to appear) IEEE 2014 International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014
    • …
    corecore