3,778 research outputs found

    Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning

    Full text link
    Developing a safe and efficient collision avoidance policy for multiple robots is challenging in the decentralized scenarios where each robot generate its paths without observing other robots' states and intents. While other distributed multi-robot collision avoidance systems exist, they often require extracting agent-level features to plan a local collision-free action, which can be computationally prohibitive and not robust. More importantly, in practice the performance of these methods are much lower than their centralized counterparts. We present a decentralized sensor-level collision avoidance policy for multi-robot systems, which directly maps raw sensor measurements to an agent's steering commands in terms of movement velocity. As a first step toward reducing the performance gap between decentralized and centralized methods, we present a multi-scenario multi-stage training framework to find an optimal policy which is trained over a large number of robots on rich, complex environments simultaneously using a policy gradient based reinforcement learning algorithm. We validate the learned sensor-level collision avoidance policy in a variety of simulated scenarios with thorough performance evaluations and show that the final learned policy is able to find time efficient, collision-free paths for a large-scale robot system. We also demonstrate that the learned policy can be well generalized to new scenarios that do not appear in the entire training period, including navigating a heterogeneous group of robots and a large-scale scenario with 100 robots. Videos are available at https://sites.google.com/view/drlmac

    Motion Planning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning

    Full text link
    Robots that navigate among pedestrians use collision avoidance algorithms to enable safe and efficient operation. Recent works present deep reinforcement learning as a framework to model the complex interactions and cooperation. However, they are implemented using key assumptions about other agents' behavior that deviate from reality as the number of agents in the environment increases. This work extends our previous approach to develop an algorithm that learns collision avoidance among a variety of types of dynamic agents without assuming they follow any particular behavior rules. This work also introduces a strategy using LSTM that enables the algorithm to use observations of an arbitrary number of other agents, instead of previous methods that have a fixed observation size. The proposed algorithm outperforms our previous approach in simulation as the number of agents increases, and the algorithm is demonstrated on a fully autonomous robotic vehicle traveling at human walking speed, without the use of a 3D Lidar

    DoShiCo Challenge: Domain Shift in Control Prediction

    Full text link
    Training deep neural network policies end-to-end for real-world applications so far requires big demonstration datasets in the real world or big sets consisting of a large variety of realistic and closely related 3D CAD models. These real or virtual data should, moreover, have very similar characteristics to the conditions expected at test time. These stringent requirements and the time consuming data collection processes that they entail, are currently the most important impediment that keeps deep reinforcement learning from being deployed in real-world applications. Therefore, in this work we advocate an alternative approach, where instead of avoiding any domain shift by carefully selecting the training data, the goal is to learn a policy that can cope with it. To this end, we propose the DoShiCo challenge: to train a model in very basic synthetic environments, far from realistic, in a way that it can be applied in more realistic environments as well as take the control decisions on real-world data. In particular, we focus on the task of collision avoidance for drones. We created a set of simulated environments that can be used as benchmark and implemented a baseline method, exploiting depth prediction as an auxiliary task to help overcome the domain shift. Even though the policy is trained in very basic environments, it can learn to fly without collisions in a very different realistic simulated environment. Of course several benchmarks for reinforcement learning already exist - but they never include a large domain shift. On the other hand, several benchmarks in computer vision focus on the domain shift, but they take the form of a static datasets instead of simulated environments. In this work we claim that it is crucial to take the two challenges together in one benchmark.Comment: Published at SIMPAR 2018. Please visit the paper webpage for more information, a movie and code for reproducing results: https://kkelchte.github.io/doshic

    Reinforcement Learning for Mobile Robot Collision Avoidance in Navigation Tasks

    Get PDF
    Collision avoidance is fundamental for mobile robot navigation. In general, its solutions include: {\it map-based} and {\it mapless approaches.} In the map-based approach, robots pre-plan collision-free paths based on an environment map and follow their paths during navigation. On the other hand, the mapless approach requires robots to avoid collisions without referencing to an environment map. This thesis first studies the map-based approach for multiple robots to collectively build environment maps. In this study, a robot following a pre-planned path may encounter unexpected obstacles, such as other moving robots and obstacles inaccurately presented on an environment map. This motivates us to study mapless collision avoidance in the second part of the thesis. Mapless collision avoidance requires a robot to infer an optimal action based on sensor data and operate in real time. Inferring an optimal action in a timely manner is computationally expensive, particularly when a robot has limited on-board computing resources. To avoid the expensive online action inferring, this thesis presents a reinforcement learning approach which learns policies for mapless collision avoidance under real-world settings. We first propose a Real-Time Actor-Critic Architecture (RTAC) to support asynchronous reinforcement learning under real-time constraint. Based on RTAC, we propose asynchronous reinforcement learning methods for mapless collision avoidance of various numbers of robots under different environment configurations. Through extensive experiments, we demonstrate that RTAC serves as a solid foundation to support multi-task and multi-agent learning for mapless collision avoidance under asynchronous settings
    • …
    corecore