3,249 research outputs found

    Deep Unsupervised Multi-View Detection of Video Game Stream Highlights

    Get PDF
    We consider the problem of automatic highlight-detection in video game streams. Currently, the vast majority of highlight-detection systems for games are triggered by the occurrence of hard-coded game events (e.g., score change, end-game), while most advanced tools and techniques are based on detection of highlights via visual analysis of game footage. We argue that in the context of game streaming, events that may constitute highlights are not only dependent on game footage, but also on social signals that are conveyed by the streamer during the play session (e.g., when interacting with viewers, or when commenting and reacting to the game). In this light, we present a multi-view unsupervised deep learning methodology for novelty-based highlight detection. The method jointly analyses both game footage and social signals such as the players facial expressions and speech, and shows promising results for generating highlights on streams of popular games such as Player Unknown's Battlegrounds

    Towards Structured Analysis of Broadcast Badminton Videos

    Full text link
    Sports video data is recorded for nearly every major tournament but remains archived and inaccessible to large scale data mining and analytics. It can only be viewed sequentially or manually tagged with higher-level labels which is time consuming and prone to errors. In this work, we propose an end-to-end framework for automatic attributes tagging and analysis of sport videos. We use commonly available broadcast videos of matches and, unlike previous approaches, does not rely on special camera setups or additional sensors. Our focus is on Badminton as the sport of interest. We propose a method to analyze a large corpus of badminton broadcast videos by segmenting the points played, tracking and recognizing the players in each point and annotating their respective badminton strokes. We evaluate the performance on 10 Olympic matches with 20 players and achieved 95.44% point segmentation accuracy, 97.38% player detection score ([email protected]), 97.98% player identification accuracy, and stroke segmentation edit scores of 80.48%. We further show that the automatically annotated videos alone could enable the gameplay analysis and inference by computing understandable metrics such as player's reaction time, speed, and footwork around the court, etc.Comment: 9 page

    Multi-Modal Machine Learning for Assessing Gaming Skills in Online Streaming: A Case Study with CS:GO

    Full text link
    Online streaming is an emerging market that address much attention. Assessing gaming skills from videos is an important task for streaming service providers to discover talented gamers. Service providers require the information to offer customized recommendation and service promotion to their customers. Meanwhile, this is also an important multi-modal machine learning tasks since online streaming combines vision, audio and text modalities. In this study we begin by identifying flaws in the dataset and proceed to clean it manually. Then we propose several variants of latest end-to-end models to learn joint representation of multiple modalities. Through our extensive experimentation, we demonstrate the efficacy of our proposals. Moreover, we identify that our proposed models is prone to identifying users instead of learning meaningful representations. We purpose future work to address the issue in the end

    A New Action Recognition Framework for Video Highlights Summarization in Sporting Events

    Full text link
    To date, machine learning for human action recognition in video has been widely implemented in sports activities. Although some studies have been successful in the past, precision is still the most significant concern. In this study, we present a high-accuracy framework to automatically clip the sports video stream by using a three-level prediction algorithm based on two classical open-source structures, i.e., YOLO-v3 and OpenPose. It is found that by using a modest amount of sports video training data, our methodology can perform sports activity highlights clipping accurately. Comparing with the previous systems, our methodology shows some advantages in accuracy. This study may serve as a new clipping system to extend the potential applications of the video summarization in sports field, as well as facilitates the development of match analysis system.Comment: 18 pages, 3 figures, 4 table

    Temporal Localization of Fine-Grained Actions in Videos by Domain Transfer from Web Images

    Full text link
    We address the problem of fine-grained action localization from temporally untrimmed web videos. We assume that only weak video-level annotations are available for training. The goal is to use these weak labels to identify temporal segments corresponding to the actions, and learn models that generalize to unconstrained web videos. We find that web images queried by action names serve as well-localized highlights for many actions, but are noisily labeled. To solve this problem, we propose a simple yet effective method that takes weak video labels and noisy image labels as input, and generates localized action frames as output. This is achieved by cross-domain transfer between video frames and web images, using pre-trained deep convolutional neural networks. We then use the localized action frames to train action recognition models with long short-term memory networks. We collect a fine-grained sports action data set FGA-240 of more than 130,000 YouTube videos. It has 240 fine-grained actions under 85 sports activities. Convincing results are shown on the FGA-240 data set, as well as the THUMOS 2014 localization data set with untrimmed training videos.Comment: Camera ready version for ACM Multimedia 201
    • …
    corecore