452 research outputs found

    Going Deeper into Action Recognition: A Survey

    Full text link
    Understanding human actions in visual data is tied to advances in complementary research areas including object recognition, human dynamics, domain adaptation and semantic segmentation. Over the last decade, human action analysis evolved from earlier schemes that are often limited to controlled environments to nowadays advanced solutions that can learn from millions of videos and apply to almost all daily activities. Given the broad range of applications from video surveillance to human-computer interaction, scientific milestones in action recognition are achieved more rapidly, eventually leading to the demise of what used to be good in a short time. This motivated us to provide a comprehensive review of the notable steps taken towards recognizing human actions. To this end, we start our discussion with the pioneering methods that use handcrafted representations, and then, navigate into the realm of deep learning based approaches. We aim to remain objective throughout this survey, touching upon encouraging improvements as well as inevitable fallbacks, in the hope of raising fresh questions and motivating new research directions for the reader

    Unsupervised object candidate discovery for activity recognition

    Get PDF
    Die automatische Interpretation menschlicher Bewegungsabläufe auf Basis von Videos ist ein wichtiger Bestandteil vieler Anwendungen im Bereich des Maschinellen Sehens, wie zum Beispiel Mensch-Roboter Interaktion, Videoüberwachung, und inhaltsbasierte Analyse von Multimedia Daten. Anders als die meisten Ansätze auf diesem Gebiet, die hauptsächlich auf die Klassifikation von einfachen Aktionen, wie Aufstehen, oder Gehen ausgerichtet sind, liegt der Schwerpunkt dieser Arbeit auf der Erkennung menschlicher Aktivitäten, d.h. komplexer Aktionssequenzen, die meist Interaktionen des Menschen mit Objekten beinhalten. Gemäß der Aktionsidentifikationstheorie leiten menschliche Aktivitäten ihre Bedeutung nicht nur von den involvierten Bewegungsmustern ab, sondern vor allem vom generellen Kontext, in dem sie stattfinden. Zu diesen kontextuellen Informationen gehören unter anderem die Gesamtheit aller vorher furchgeführter Aktionen, der Ort an dem sich die aktive Person befindet, sowie die Menge der Objekte, die von ihr manipuliert werden. Es ist zum Beispiel nicht möglich auf alleiniger Basis von Bewegungsmustern und ohne jeglicher Miteinbeziehung von Objektwissen zu entschieden ob eine Person, die ihre Hand zum Mund führt gerade etwas isst oder trinkt, raucht, oder bloß die Lippen abwischt. Die meisten Arbeiten auf dem Gebiet der computergestützten Aktons- und Aktivitätserkennung ignorieren allerdings jegliche durch den Kontext bedingte Informationen und beschränken sich auf die Identifikation menschlicher Aktivitäten auf Basis der beobachteten Bewegung. Wird jedoch Objektwissen für die Klassifikation miteinbezogen, so geschieht dies meist unter Zuhilfenahme von überwachten Detektoren, für deren Einrichtung widerum eine erhebliche Menge an Trainingsdaten erforderlich ist. Bedingt durch die hohen zeitlichen Kosten, die die Annotation dieser Trainingsdaten mit sich bringt, wird das Erweitern solcher Systeme, zum Beispiel durch das Hinzufügen neuer Typen von Aktionen, zum eigentlichen Flaschenhals. Ein weiterer Nachteil des Hinzuziehens von überwacht trainierten Objektdetektoren, ist deren Fehleranfälligkeit, selbst wenn die verwendeten Algorithmen dem neuesten Stand der Technik entsprechen. Basierend auf dieser Beobachtung ist das Ziel dieser Arbeit die Leistungsfähigkeit computergestützter Aktivitätserkennung zu verbessern mit Hilfe der Hinzunahme von Objektwissen, welches im Gegensatz zu den bisherigen Ansätzen ohne überwachten Trainings gewonnen werden kann. Wir Menschen haben die bemerkenswerte Fähigkeit selektiv die Aufmerksamkeit auf bestimmte Regionen im Blickfeld zu fokussieren und gleichzeitig nicht relevante Regionen auszublenden. Dieser kognitive Prozess erlaubt es uns unsere beschränkten Bewusstseinsressourcen unbewusst auf Inhalte zu richten, die anschließend durch das Gehirn ausgewertet werden. Zum Beispiel zur Interpretation visueller Muster als Objekte eines bestimmten Typs. Die Regionen im Blickfeld, die unsere Aufmerksamkeit unbewusst anziehen werden als Proto-Objekte bezeichnet. Sie sind definiert als unbestimmte Teile des visuellen Informationsspektrums, die zu einem späteren Zeitpunkt durch den Menschen als tatsächliche Objekte wahrgenommen werden können, wenn er seine Aufmerksamkeit auf diese richtet. Einfacher ausgedrückt: Proto-Objekte sind Kandidaten für Objekte, oder deren Bestandteile, die zwar lokalisiert aber noch nicht identifiziert wurden. Angeregt durch die menschliche Fähigkeit solche visuell hervorstechenden (salienten) Regionen zuverlässig vom Hintergrund zu unterscheiden, haben viele Wissenschaftler Methoden entwickelt, die es erlauben Proto-Objekte zu lokalisieren. Allen diesen Algorithmen ist gemein, dass möglichst wenig statistisches Wissens über tatsächliche Objekte vorausgesetzt wird. Visuelle Aufmerksamkeit und Objekterkennung sind sehr eng miteinander vernküpfte Prozesse im visuellen System des Menschen. Aus diesem Grund herrscht auf dem Gebiet des Maschinellen Sehens ein reges Interesse an der Integration beider Konzepte zur Erhöhung der Leistung aktueller Bilderkennungssysteme. Die im Rahmen dieser Arbeit entwickelten Methoden gehen in eine ähnliche Richtung: wir demonstrieren, dass die Lokalisation von Proto-Objekten es erlaubt Objektkandidaten zu finden, die geeignet sind als zusätzliche Modalität zu dienen für die bewegungsbasierte Erkennung menschlicher Aktivitäten. Die Grundlage dieser Arbeit bildet dabei ein sehr effizienter Algorithmus, der die visuelle Salienz mit Hilfe von quaternionenbasierten DCT Bildsignaturen approximiert. Zur Extraktion einer Menge geeigneter Objektkandidaten (d.h. Proto-Objekten) aus den resultierenden Salienzkarten, haben wir eine Methode entwickelt, die den kognitiven Mechanismus des Inhibition of Return implementiert. Die auf diese Weise gewonnenen Objektkandidaten nutzen wir anschliessend in Kombination mit state-of-the-art Bag-of-Words Methoden zur Merkmalsbeschreibung von Bewegungsmustern um komplexe Aktivitäten des täglichen Lebens zu klassifizieren. Wir evaluieren das im Rahmen dieser Arbeit entwickelte System auf diversen häufig genutzten Benchmark-Datensätzen und zeigen experimentell, dass das Miteinbeziehen von Proto-Objekten für die Aktivitätserkennung zu einer erheblichen Leistungssteigerung führt im Vergleich zu rein bewegungsbasierten Ansätzen. Zudem demonstrieren wir, dass das vorgestellte System bei der Erkennung menschlicher Aktivitäten deutlich weniger Fehler macht als eine Vielzahl von Methoden, die dem aktuellen Stand der Technik entsprechen. Überraschenderweise übertrifft unser System leistungsmäßig sogar Verfahren, die auf Objektwissen aufbauen, welches von überwacht trainierten Detektoren, oder manuell erstellten Annotationen stammt. Benchmark-Datensätze sind ein sehr wichtiges Mittel zum quantitativen Vergleich von computergestützten Mustererkennungsverfahren. Nach einer Überprüfung aller öffentlich verfügbaren, relevanten Benchmarks, haben wir jedoch festgestellt, dass keiner davon geeignet war für eine detaillierte Evaluation von Methoden zur Erkennung komplexer, menschlicher Aktivitäten. Aus diesem Grund bestand ein Teil dieser Arbeit aus der Konzeption und Aufnahme eines solchen Datensatzes, des KIT Robo-kitchen Benchmarks. Wie der Name vermuten lässt haben wir uns dabei für ein Küchenszenario entschieden, da es ermöglicht einen großen Umfang an Aktivitäten des täglichen Lebens einzufangen, von denen viele Objektmanipulationen enthalten. Um eine möglichst umfangreiche Menge natürlicher Bewegungen zu erhalten, wurden die Teilnehmer während der Aufnahmen kaum eingeschränkt in der Art und Weise wie die diversen Aktivitäten auszuführen sind. Zu diesem Zweck haben wir den Probanden nur die Art der auszuführenden Aktivität mitgeteilt, sowie wo die benötigten Gegenstände zu finden sind, und ob die jeweilige Tätigkeit am Küchentisch oder auf der Arbeitsplatte auszuführen ist. Dies hebt KIT Robo-kitchen deutlich hervor gegenüber den meisten existierenden Datensätzen, die sehr unrealistisch gespielte Aktivitäten enthalten, welche unter Laborbedingungen aufgenommen wurden. Seit seiner Veröffentlichung wurde der resultierende Benchmark mehrfach verwendet zur Evaluation von Algorithmen, die darauf abzielen lang andauerne, realistische, komplexe, und quasi-periodische menschliche Aktivitäten zu erkennen

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF

    Time-slice analysis of dyadic human activity

    Get PDF
    La reconnaissance d’activités humaines à partir de données vidéo est utilisée pour la surveillance ainsi que pour des applications d’interaction homme-machine. Le principal objectif est de classer les vidéos dans l’une des k classes d’actions à partir de vidéos entièrement observées. Cependant, de tout temps, les systèmes intelligents sont améliorés afin de prendre des décisions basées sur des incertitudes et ou des informations incomplètes. Ce besoin nous motive à introduire le problème de l’analyse de l’incertitude associée aux activités humaines et de pouvoir passer à un nouveau niveau de généralité lié aux problèmes d’analyse d’actions. Nous allons également présenter le problème de reconnaissance d’activités par intervalle de temps, qui vise à explorer l’activité humaine dans un intervalle de temps court. Il a été démontré que l’analyse par intervalle de temps est utile pour la caractérisation des mouvements et en général pour l’analyse de contenus vidéo. Ces études nous encouragent à utiliser ces intervalles de temps afin d’analyser l’incertitude associée aux activités humaines. Nous allons détailler à quel degré de certitude chaque activité se produit au cours de la vidéo. Dans cette thèse, l’analyse par intervalle de temps d’activités humaines avec incertitudes sera structurée en 3 parties. i) Nous présentons une nouvelle famille de descripteurs spatiotemporels optimisés pour la prédiction précoce avec annotations d’intervalle de temps. Notre représentation prédictive du point d’intérêt spatiotemporel (Predict-STIP) est basée sur l’idée de la contingence entre intervalles de temps. ii) Nous exploitons des techniques de pointe pour extraire des points d’intérêts afin de représenter ces intervalles de temps. iii) Nous utilisons des relations (uniformes et par paires) basées sur les réseaux neuronaux convolutionnels entre les différentes parties du corps de l’individu dans chaque intervalle de temps. Les relations uniformes enregistrent l’apparence locale de la partie du corps tandis que les relations par paires captent les relations contextuelles locales entre les parties du corps. Nous extrayons les spécificités de chaque image dans l’intervalle de temps et examinons différentes façons de les agréger temporellement afin de générer un descripteur pour tout l’intervalle de temps. En outre, nous créons une nouvelle base de données qui est annotée à de multiples intervalles de temps courts, permettant la modélisation de l’incertitude inhérente à la reconnaissance d’activités par intervalle de temps. Les résultats expérimentaux montrent l’efficience de notre stratégie dans l’analyse des mouvements humains avec incertitude.Recognizing human activities from video data is routinely leveraged for surveillance and human-computer interaction applications. The main focus has been classifying videos into one of k action classes from fully observed videos. However, intelligent systems must to make decisions under uncertainty, and based on incomplete information. This need motivates us to introduce the problem of analysing the uncertainty associated with human activities and move to a new level of generality in the action analysis problem. We also present the problem of time-slice activity recognition which aims to explore human activity at a small temporal granularity. Time-slice recognition is able to infer human behaviours from a short temporal window. It has been shown that temporal slice analysis is helpful for motion characterization and for video content representation in general. These studies motivate us to consider timeslices for analysing the uncertainty associated with human activities. We report to what degree of certainty each activity is occurring throughout the video from definitely not occurring to definitely occurring. In this research, we propose three frameworks for time-slice analysis of dyadic human activity under uncertainty. i) We present a new family of spatio-temporal descriptors which are optimized for early prediction with time-slice action annotations. Our predictive spatiotemporal interest point (Predict-STIP) representation is based on the intuition of temporal contingency between time-slices. ii) we exploit state-of-the art techniques to extract interest points in order to represent time-slices. We also present an accumulative uncertainty to depict the uncertainty associated with partially observed videos for the task of early activity recognition. iii) we use Convolutional Neural Networks-based unary and pairwise relations between human body joints in each time-slice. The unary term captures the local appearance of the joints while the pairwise term captures the local contextual relations between the parts. We extract these features from each frame in a time-slice and examine different temporal aggregations to generate a descriptor for the whole time-slice. Furthermore, we create a novel dataset which is annotated at multiple short temporal windows, allowing the modelling of the inherent uncertainty in time-slice activity recognition. All the three methods have been evaluated on TAP dataset. Experimental results demonstrate the effectiveness of our framework in the analysis of dyadic activities under uncertaint

    Recognising and localising human actions

    Get PDF
    Human action recognition in challenging video data is becoming an increasingly important research area. Given the growing number of cameras and robots pointing their lenses at humans, the need for automatic recognition of human actions arises, promising Google-style video search and automatic video summarisation/description. Furthermore, for any autonomous robotic system to interact with humans, it must rst be able to understand and quickly react to human actions. Although the best action classication methods aggregate features from the entire video clip in which the action unfolds, this global representation may include irrelevant scene context and movements which are shared amongst multiple action classes. For example, a waving action may be performed whilst walking, however if the walking movement appears in distinct action classes, then it should not be included in training a waving movement classier. For this reason, we propose an action classication framework in which more discriminative action subvolumes are learned in a weakly supervised setting, owing to the diculty of manually labelling massive video datasets. The learned models are used to simultaneously classify video clips and to localise actions to a given space-time subvolume. Each subvolume is cast as a bag-of-features (BoF) instance in a multiple-instance-learning framework, which in turn is used to learn its class membership. We demonstrate quantitatively that even with single xed-sized subvolumes, the classication performance of our proposed algorithm is superior to our BoF baseline on the majority of performance measures, and shows promise for space-time action localisation on the most challenging video datasets. Exploiting spatio-temporal structure in the video should also improve results, just as deformable part models have proven highly successful in object recognition. However, whereas objects have clear boundaries which means we can easily dene a ground truth for initialisation, 3D space-time actions are inherently ambiguous and expensive to annotate in large datasets. Thus, it is desirable to adapt pictorial star models to action datasets without location annotation, and to features invariant to changes in pose such as bag-of-feature and Fisher vectors, rather than low-level HoG. Thus, we propose local deformable spatial bag-of-features (LDSBoF) in which local discriminative regions are split into axed grid of parts that are allowed to deform in both space and time at test-time. In our experimental evaluation we demonstrate that by using local, deformable space-time action parts, we are able to achieve very competitive classification performance, whilst being able to localise actions even in the most challenging video datasets. A recent trend in action recognition is towards larger and more challenging datasets, an increasing number of action classes and larger visual vocabularies. For the global classication of human action video clips, the bag-of-visual-words pipeline is currently the best performing. However, the strategies chosen to sample features and construct a visual vocabulary are critical to performance, in fact often dominating performance. Thus, we provide a critical evaluation of various approaches to building a vocabulary and show that good practises do have a signicant impact. By subsampling and partitioning features strategically, we are able to achieve state-of-the-art results on 5 major action recognition datasets using relatively small visual vocabularies. Another promising approach to recognise human actions first encodes the action sequence via a generative dynamical model. However, using classical distances for their classication does not necessarily deliver good results. Therefore we propose a general framework for learning distance functions between dynamical models, given a training set of labelled videos. The optimal distance function is selected among a family of `pullback' ones, induced by a parametrised mapping of the space of models. We focus here on hidden Markov models and their model space, and show how pullback distance learning greatly improves action recognition performances with respect to base distances. Finally, the action classication systems that use a single global representation for each video clip are tailored for oine batch classication benchmarks. For human-robot interaction however, current systems fall short, either because they can only detect one human action per video frame, or because they assume the video is available ahead of time. In this work we propose an online human action detection system that can incrementally detect multiple concurrent space-time actions. In this way, it becomes possible to learn new action classes on-the-fly, allowing multiple people to actively teach and interact with a robot
    • …
    corecore