1,615 research outputs found

    ExcitNet vocoder: A neural excitation model for parametric speech synthesis systems

    Full text link
    This paper proposes a WaveNet-based neural excitation model (ExcitNet) for statistical parametric speech synthesis systems. Conventional WaveNet-based neural vocoding systems significantly improve the perceptual quality of synthesized speech by statistically generating a time sequence of speech waveforms through an auto-regressive framework. However, they often suffer from noisy outputs because of the difficulties in capturing the complicated time-varying nature of speech signals. To improve modeling efficiency, the proposed ExcitNet vocoder employs an adaptive inverse filter to decouple spectral components from the speech signal. The residual component, i.e. excitation signal, is then trained and generated within the WaveNet framework. In this way, the quality of the synthesized speech signal can be further improved since the spectral component is well represented by a deep learning framework and, moreover, the residual component is efficiently generated by the WaveNet framework. Experimental results show that the proposed ExcitNet vocoder, trained both speaker-dependently and speaker-independently, outperforms traditional linear prediction vocoders and similarly configured conventional WaveNet vocoders.Comment: Accepted to the conference of EUSIPCO 2019. arXiv admin note: text overlap with arXiv:1811.0331

    Singing voice synthesis based on convolutional neural networks

    Full text link
    The present paper describes a singing voice synthesis based on convolutional neural networks (CNNs). Singing voice synthesis systems based on deep neural networks (DNNs) are currently being proposed and are improving the naturalness of synthesized singing voices. In these systems, the relationship between musical score feature sequences and acoustic feature sequences extracted from singing voices is modeled by DNNs. Then, an acoustic feature sequence of an arbitrary musical score is output in units of frames by the trained DNNs, and a natural trajectory of a singing voice is obtained by using a parameter generation algorithm. As singing voices contain rich expression, a powerful technique to model them accurately is required. In the proposed technique, long-term dependencies of singing voices are modeled by CNNs. An acoustic feature sequence is generated in units of segments that consist of long-term frames, and a natural trajectory is obtained without the parameter generation algorithm. Experimental results in a subjective listening test show that the proposed architecture can synthesize natural sounding singing voices.Comment: Singing voice samples (Japanese, English, Chinese): https://www.techno-speech.com/news-20181214a-e

    Generative adversarial network-based glottal waveform model for statistical parametric speech synthesis

    Full text link
    Recent studies have shown that text-to-speech synthesis quality can be improved by using glottal vocoding. This refers to vocoders that parameterize speech into two parts, the glottal excitation and vocal tract, that occur in the human speech production apparatus. Current glottal vocoders generate the glottal excitation waveform by using deep neural networks (DNNs). However, the squared error-based training of the present glottal excitation models is limited to generating conditional average waveforms, which fails to capture the stochastic variation of the waveforms. As a result, shaped noise is added as post-processing. In this study, we propose a new method for predicting glottal waveforms by generative adversarial networks (GANs). GANs are generative models that aim to embed the data distribution in a latent space, enabling generation of new instances very similar to the original by randomly sampling the latent distribution. The glottal pulses generated by GANs show a stochastic component similar to natural glottal pulses. In our experiments, we compare synthetic speech generated using glottal waveforms produced by both DNNs and GANs. The results show that the newly proposed GANs achieve synthesis quality comparable to that of widely-used DNNs, without using an additive noise component.Comment: Accepted in Interspeec

    A Waveform Representation Framework for High-quality Statistical Parametric Speech Synthesis

    Full text link
    State-of-the-art statistical parametric speech synthesis (SPSS) generally uses a vocoder to represent speech signals and parameterize them into features for subsequent modeling. Magnitude spectrum has been a dominant feature over the years. Although perceptual studies have shown that phase spectrum is essential to the quality of synthesized speech, it is often ignored by using a minimum phase filter during synthesis and the speech quality suffers. To bypass this bottleneck in vocoded speech, this paper proposes a phase-embedded waveform representation framework and establishes a magnitude-phase joint modeling platform for high-quality SPSS. Our experiments on waveform reconstruction show that the performance is better than that of the widely-used STRAIGHT. Furthermore, the proposed modeling and synthesis platform outperforms a leading-edge, vocoded, deep bidirectional long short-term memory recurrent neural network (DBLSTM-RNN)-based baseline system in various objective evaluation metrics conducted.Comment: accepted and will appear in APSIPA2015; keywords: speech synthesis, LSTM-RNN, vocoder, phase, waveform, modelin

    WaveCycleGAN2: Time-domain Neural Post-filter for Speech Waveform Generation

    Full text link
    WaveCycleGAN has recently been proposed to bridge the gap between natural and synthesized speech waveforms in statistical parametric speech synthesis and provides fast inference with a moving average model rather than an autoregressive model and high-quality speech synthesis with the adversarial training. However, the human ear can still distinguish the processed speech waveforms from natural ones. One possible cause of this distinguishability is the aliasing observed in the processed speech waveform via down/up-sampling modules. To solve the aliasing and provide higher quality speech synthesis, we propose WaveCycleGAN2, which 1) uses generators without down/up-sampling modules and 2) combines discriminators of the waveform domain and acoustic parameter domain. The results show that the proposed method 1) alleviates the aliasing well, 2) is useful for both speech waveforms generated by analysis-and-synthesis and statistical parametric speech synthesis, and 3) achieves a mean opinion score comparable to those of natural speech and speech synthesized by WaveNet (open WaveNet) and WaveGlow while processing speech samples at a rate of more than 150 kHz on an NVIDIA Tesla P100.Comment: Submitted to INTERSPEECH201

    Speaker-adaptive neural vocoders for parametric speech synthesis systems

    Full text link
    This paper proposes speaker-adaptive neural vocoders for parametric text-to-speech (TTS) systems. Recently proposed WaveNet-based neural vocoding systems successfully generate a time sequence of speech signal with an autoregressive framework. However, it remains a challenge to synthesize high-quality speech when the amount of a target speaker's training data is insufficient. To generate more natural speech signals with the constraint of limited training data, we propose a speaker adaptation task with an effective variation of neural vocoding models. In the proposed method, a speaker-independent training method is applied to capture universal attributes embedded in multiple speakers, and the trained model is then optimized to represent the specific characteristics of the target speaker. Experimental results verify that the proposed TTS systems with speaker-adaptive neural vocoders outperform those with traditional source-filter model-based vocoders and those with WaveNet vocoders, trained either speaker-dependently or speaker-independently. In particular, our TTS system achieves 3.80 and 3.77 MOS for the Korean male and Korean female speakers, respectively, even though we use only ten minutes' speech corpus for training the model.Comment: Accepted to the IEEE Workshop of MMSP 202

    Statistical Parametric Speech Synthesis Incorporating Generative Adversarial Networks

    Full text link
    A method for statistical parametric speech synthesis incorporating generative adversarial networks (GANs) is proposed. Although powerful deep neural networks (DNNs) techniques can be applied to artificially synthesize speech waveform, the synthetic speech quality is low compared with that of natural speech. One of the issues causing the quality degradation is an over-smoothing effect often observed in the generated speech parameters. A GAN introduced in this paper consists of two neural networks: a discriminator to distinguish natural and generated samples, and a generator to deceive the discriminator. In the proposed framework incorporating the GANs, the discriminator is trained to distinguish natural and generated speech parameters, while the acoustic models are trained to minimize the weighted sum of the conventional minimum generation loss and an adversarial loss for deceiving the discriminator. Since the objective of the GANs is to minimize the divergence (i.e., distribution difference) between the natural and generated speech parameters, the proposed method effectively alleviates the over-smoothing effect on the generated speech parameters. We evaluated the effectiveness for text-to-speech and voice conversion, and found that the proposed method can generate more natural spectral parameters and F0F_0 than conventional minimum generation error training algorithm regardless its hyper-parameter settings. Furthermore, we investigated the effect of the divergence of various GANs, and found that a Wasserstein GAN minimizing the Earth-Mover's distance works the best in terms of improving synthetic speech quality.Comment: Preprint manuscript of IEEE/ACM Transactions on Audio, Speech and Language Processin

    WaveCycleGAN: Synthetic-to-natural speech waveform conversion using cycle-consistent adversarial networks

    Full text link
    We propose a learning-based filter that allows us to directly modify a synthetic speech waveform into a natural speech waveform. Speech-processing systems using a vocoder framework such as statistical parametric speech synthesis and voice conversion are convenient especially for a limited number of data because it is possible to represent and process interpretable acoustic features over a compact space, such as the fundamental frequency (F0) and mel-cepstrum. However, a well-known problem that leads to the quality degradation of generated speech is an over-smoothing effect that eliminates some detailed structure of generated/converted acoustic features. To address this issue, we propose a synthetic-to-natural speech waveform conversion technique that uses cycle-consistent adversarial networks and which does not require any explicit assumption about speech waveform in adversarial learning. In contrast to current techniques, since our modification is performed at the waveform level, we expect that the proposed method will also make it possible to generate `vocoder-less' sounding speech even if the input speech is synthesized using a vocoder framework. The experimental results demonstrate that our proposed method can 1) alleviate the over-smoothing effect of the acoustic features despite the direct modification method used for the waveform and 2) greatly improve the naturalness of the generated speech sounds.Comment: SLT201

    Analysing Shortcomings of Statistical Parametric Speech Synthesis

    Full text link
    Output from statistical parametric speech synthesis (SPSS) remains noticeably worse than natural speech recordings in terms of quality, naturalness, speaker similarity, and intelligibility in noise. There are many hypotheses regarding the origins of these shortcomings, but these hypotheses are often kept vague and presented without empirical evidence that could confirm and quantify how a specific shortcoming contributes to imperfections in the synthesised speech. Throughout speech synthesis literature, surprisingly little work is dedicated towards identifying the perceptually most important problems in speech synthesis, even though such knowledge would be of great value for creating better SPSS systems. In this book chapter, we analyse some of the shortcomings of SPSS. In particular, we discuss issues with vocoding and present a general methodology for quantifying the effect of any of the many assumptions and design choices that hold SPSS back. The methodology is accompanied by an example that carefully measures and compares the severity of perceptual limitations imposed by vocoding as well as other factors such as the statistical model and its use.Comment: 34 pages with 4 figures; draft book chapte

    Fast and High-Quality Singing Voice Synthesis System based on Convolutional Neural Networks

    Full text link
    The present paper describes singing voice synthesis based on convolutional neural networks (CNNs). Singing voice synthesis systems based on deep neural networks (DNNs) are currently being proposed and are improving the naturalness of synthesized singing voices. As singing voices represent a rich form of expression, a powerful technique to model them accurately is required. In the proposed technique, long-term dependencies of singing voices are modeled by CNNs. An acoustic feature sequence is generated for each segment that consists of long-term frames, and a natural trajectory is obtained without the parameter generation algorithm. Furthermore, a computational complexity reduction technique, which drives the DNNs in different time units depending on type of musical score features, is proposed. Experimental results show that the proposed method can synthesize natural sounding singing voices much faster than the conventional method.Comment: Accepted to ICASSP 2020. Singing voice samples (Japanese, English, Chinese): https://www.techno-speech.com/news-20181214a-en. arXiv admin note: substantial text overlap with arXiv:1904.0686
    • …
    corecore