519 research outputs found

    Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection using Chest X-ray

    Get PDF
    Pneumonia is a life-threatening disease, which occurs in the lungs caused by either bacterial or viral infection. It can be life-endangering if not acted upon in the right time and thus an early diagnosis of pneumonia is vital. The aim of this paper is to automatically detect bacterial and viral pneumonia using digital x-ray images. It provides a detailed report on advances made in making accurate detection of pneumonia and then presents the methodology adopted by the authors. Four different pre-trained deep Convolutional Neural Network (CNN)- AlexNet, ResNet18, DenseNet201, and SqueezeNet were used for transfer learning. 5247 Bacterial, viral and normal chest x-rays images underwent preprocessing techniques and the modified images were trained for the transfer learning based classification task. In this work, the authors have reported three schemes of classifications: normal vs pneumonia, bacterial vs viral pneumonia and normal, bacterial and viral pneumonia. The classification accuracy of normal and pneumonia images, bacterial and viral pneumonia images, and normal, bacterial and viral pneumonia were 98%, 95%, and 93.3% respectively. This is the highest accuracy in any scheme than the accuracies reported in the literature. Therefore, the proposed study can be useful in faster-diagnosing pneumonia by the radiologist and can help in the fast airport screening of pneumonia patients.Comment: 13 Figures, 5 tables. arXiv admin note: text overlap with arXiv:2003.1314

    Boosted Cascaded Convnets for Multilabel Classification of Thoracic Diseases in Chest Radiographs

    Full text link
    Chest X-ray is one of the most accessible medical imaging technique for diagnosis of multiple diseases. With the availability of ChestX-ray14, which is a massive dataset of chest X-ray images and provides annotations for 14 thoracic diseases; it is possible to train Deep Convolutional Neural Networks (DCNN) to build Computer Aided Diagnosis (CAD) systems. In this work, we experiment a set of deep learning models and present a cascaded deep neural network that can diagnose all 14 pathologies better than the baseline and is competitive with other published methods. Our work provides the quantitative results to answer following research questions for the dataset: 1) What loss functions to use for training DCNN from scratch on ChestX-ray14 dataset that demonstrates high class imbalance and label co occurrence? 2) How to use cascading to model label dependency and to improve accuracy of the deep learning model?Comment: Submitted to CVPR 201

    Thoracic Disease Identification and Localization with Limited Supervision

    Full text link
    Accurate identification and localization of abnormalities from radiology images play an integral part in clinical diagnosis and treatment planning. Building a highly accurate prediction model for these tasks usually requires a large number of images manually annotated with labels and finding sites of abnormalities. In reality, however, such annotated data are expensive to acquire, especially the ones with location annotations. We need methods that can work well with only a small amount of location annotations. To address this challenge, we present a unified approach that simultaneously performs disease identification and localization through the same underlying model for all images. We demonstrate that our approach can effectively leverage both class information as well as limited location annotation, and significantly outperforms the comparative reference baseline in both classification and localization tasks.Comment: Conference on Computer Vision and Pattern Recognition 2018 (CVPR 2018). V1: CVPR submission; V2: +supplementary; V3: CVPR camera-ready; V4: correction, update reference baseline results according to their latest post; V5: minor correction; V6: Identification results using NIH data splits and various image model

    A novel augmented deep transfer learning for classification of COVID-19 and other thoracic diseases from X-rays

    Get PDF
    Deep learning has provided numerous breakthroughs in natural imaging tasks. However, its successful application to medical images is severely handicapped with the limited amount of annotated training data. Transfer learning is commonly adopted for the medical imaging tasks. However, a large covariant shift between the source domain of natural images and target domain of medical images results in poor transfer learning. Moreover, scarcity of annotated data for the medical imaging tasks causes further problems for effective transfer learning. To address these problems, we develop an augmented ensemble transfer learning technique that leads to significant performance gain over the conventional transfer learning. Our technique uses an ensemble of deep learning models, where the architecture of each network is modified with extra layers to account for dimensionality change between the images of source and target data domains. Moreover, the model is hierarchically tuned to the target domain with augmented training data. Along with the network ensemble, we also utilize an ensemble of dictionaries that are based on features extracted from the augmented models. The dictionary ensemble provides an additional performance boost to our method. We first establish the effectiveness of our technique with the challenging ChestXray-14 radiography data set. Our experimental results show more than 50% reduction in the error rate with our method as compared to the baseline transfer learning technique. We then apply our technique to a recent COVID-19 data set for binary and multi-class classification tasks. Our technique achieves 99.49% accuracy for the binary classification, and 99.24% for multi-class classification

    Automated grading of chest x-ray images for viral pneumonia with convolutional neural networks ensemble and region of interest localization

    Get PDF
    Following its initial identification on December 31, 2019, COVID-19 quickly spread around the world as a pandemic claiming more than six million lives. An early diagnosis with appropriate intervention can help prevent deaths and serious illness as the distinguishing symptoms that set COVID-19 apart from pneumonia and influenza frequently don't show up until after the patient has already suffered significant damage. A chest X-ray (CXR), one of many imaging modalities that are useful for detection and one of the most used, offers a non-invasive method of detection. The CXR image analysis can also reveal additional disorders, such as pneumonia, which show up as anomalies in the lungs. Thus these CXRs can be used for automated grading aiding the doctors in making a better diagnosis. In order to classify a CXR image into the Negative for Pneumonia, Typical, Indeterminate, and Atypical, we used the publicly available CXR image competition dataset SIIM-FISABIO-RSNA COVID-19 from Kaggle. The suggested architecture employed an ensemble of EfficientNetv2-L for classification, which was trained via transfer learning from the initialised weights of ImageNet21K on various subsets of data (Code for the proposed methodology is available at: https://github.com/asadkhan1221/siim-covid19.git). To identify and localise opacities, an ensemble of YOLO was combined using Weighted Boxes Fusion (WBF). Significant generalisability gains were made possible by the suggested technique's addition of classification auxiliary heads to the CNN backbone. The suggested method improved further by utilising test time augmentation for both classifiers and localizers. The results for Mean Average Precision score show that the proposed deep learning model achieves 0.617 and 0.609 on public and private sets respectively and these are comparable to other techniques for the Kaggle dataset

    DETECTION OF PNEUMONIA BY USING NINE PRE-TRAINED TRANSFER LEARNING MODELS BASED ON DEEP LEARNING TECHNIQUES

    Get PDF
    Pneumonia is a serious chest disease that affects the lungs. This disease has become an important issue that must be taken care of in the field of medicine due to its rapid and intense spread, especially among people who are addicted to smoking. This paper presents an efficient prediction system for detecting pneumonia using nine pre-trained transfer learning models based on deep learning technique (Inception v4, SeNet-154, Xception, PolyNet, ResNet-50, DenseNet-121, DenseNet-169, AlexNet, and SqueezeNet). The dataset in this study consisted of 5856 chest x-rays, which were divided into 5216 for training and 624 for the test. In the training phase, the images were pre-processed by resizing the input images to the same dimensions to reduce complexity and computation. The images are then forwarded to the proposed models (Inception v4, SeNet-154, Xception, PolyNet, ResNet-50, DenseNet-121, DenseNet-169, AlexNet, SqueezeNet) to extract features and classify the images as normal or pneumonia. The results of the proposed models (Inception v4, SeNet-154, Xception, PolyNet, ResNet-50, DenseNet-121 DenseNet-169, AlexNet and SqueezeNet) give accuracies (98.72%, 98.94%, 98.88%, 98.72%, 96.2%, 94.69%, 96.29%, 95.01% and 96.10%) respectively. We found that the SeNet-154 model gave the best result with an accuracy of 98.94% with a validation loss (0.018103). When comparing our results with older studies, it should be noted that the proposed method is superior to other methods
    • …
    corecore