17 research outputs found

    Identifying and Extracting Rare Disease Phenotypes with Large Language Models

    Full text link
    Rare diseases (RDs) are collectively common and affect 300 million people worldwide. Accurate phenotyping is critical for informing diagnosis and treatment, but RD phenotypes are often embedded in unstructured text and time-consuming to extract manually. While natural language processing (NLP) models can perform named entity recognition (NER) to automate extraction, a major bottleneck is the development of a large, annotated corpus for model training. Recently, prompt learning emerged as an NLP paradigm that can lead to more generalizable results without any (zero-shot) or few labeled samples (few-shot). Despite growing interest in ChatGPT, a revolutionary large language model capable of following complex human prompts and generating high-quality responses, none have studied its NER performance for RDs in the zero- and few-shot settings. To this end, we engineered novel prompts aimed at extracting RD phenotypes and, to the best of our knowledge, are the first the establish a benchmark for evaluating ChatGPT's performance in these settings. We compared its performance to the traditional fine-tuning approach and conducted an in-depth error analysis. Overall, fine-tuning BioClinicalBERT resulted in higher performance (F1 of 0.689) than ChatGPT (F1 of 0.472 and 0.591 in the zero- and few-shot settings, respectively). Despite this, ChatGPT achieved similar or higher accuracy for certain entities (i.e., rare diseases and signs) in the one-shot setting (F1 of 0.776 and 0.725). This suggests that with appropriate prompt engineering, ChatGPT has the potential to match or outperform fine-tuned language models for certain entity types with just one labeled sample. While the proliferation of large language models may provide opportunities for supporting RD diagnosis and treatment, researchers and clinicians should critically evaluate model outputs and be well-informed of their limitations

    The RareDis corpus: A corpus annotated with rare diseases, their signs and symptoms

    Get PDF
    Rare diseases affect a small number of people compared to the general population. However, more than 6,000 different rare diseases exist and, in total, they affect more than 300 million people worldwide. Rare diseases share as part of their main problem, the delay in diagnosis and the sparse information available for researchers, clinicians, and patients. Finding a diagnostic can be a very long and frustrating experience for patients and their families. The average diagnostic delay is between 6–8 years. Many of these diseases result in different manifestations among patients, which hampers even more their detection and the correct treatment choice. Therefore, there is an urgent need to increase the scientific and medical knowledge about rare diseases. Natural Language Processing (NLP) can help to extract relevant information about rare diseases to facilitate their diagnosis and treatments, but most NLP techniques require manually annotated corpora. Therefore, our goal is to create a gold standard corpus annotated with rare diseases and their clinical manifestations. It could be used to train and test NLP approaches and the information extracted through NLP could enrich the knowledge of rare diseases, and thereby, help to reduce the diagnostic delay and improve the treatment of rare diseases. The paper describes the selection of 1,041 texts to be included in the corpus, the annotation process and the annotation guidelines. The entities (disease, rare disease, symptom, sign and anaphor) and the relationships (produces, is a, is acron, is synon, increases risk of, anaphora) were annotated. The RareDis corpus contains more than 5,000 rare diseases and almost 6,000 clinical manifestations are annotated. Moreover, the Inter Annotator Agreement evaluation shows a relatively high agreement (F1-measure equal to 83.5% under exact match criteria for the entities and equal to 81.3% for the relations). Based on these results, this corpus is of high quality, supposing a significant step for the field since there is a scarcity of available corpus annotated with rare diseases. This could open the door to further NLP applications, which would facilitate the diagnosis and treatment of these rare diseases and, therefore, would improve dramatically the quality of life of these patients.This work was supported by the Madrid Government (Comunidad de Madrid) under the Multiannual Agreement with UC3M in the line of "Fostering Young Doctors Research" (NLP4RARE-CM-UC3M) and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation; the Multiannual Agreement with UC3M in the line of "Excellence of University Professors (EPUC3M17)"; and a grant from Spanish Ministry of Economy and Competitiveness (SAF2017-86810-R)

    Adverse drug reaction extraction on electronic health records written in Spanish

    Get PDF
    148 p.This work focuses on the automatic extraction of Adverse Drug Reactions (ADRs) in Electronic HealthRecords (EHRs). That is, extracting a response to a medicine which is noxious and unintended and whichoccurs at doses normally used. From Natural Language Processing (NLP) perspective, this wasapproached as a relation extraction task in which the drug is the causative agent of a disease, sign orsymptom, that is, the adverse reaction.ADR extraction from EHRs involves major challenges. First, ADRs are rare events. That is, relationsbetween drugs and diseases found in an EHR are seldom ADRs (are often unrelated or, instead, related astreatment). This implies the inference from samples with skewed class distribution. Second, EHRs arewritten by experts often under time pressure, employing both rich medical jargon together with colloquialexpressions (not always grammatical) and it is not infrequent to find misspells and both standard andnon-standard abbreviations. All this leads to a high lexical variability.We explored several ADR detection algorithms and representations to characterize the ADR candidates.In addition, we have assessed the tolerance of the ADR detection model to external noise such as theincorrect detection of implied medical entities implied in the ADR extraction, i.e. drugs and diseases. Westtled the first steps on ADR extraction in Spanish using a corpus of real EHRs

    Social informatics

    Get PDF
    5th International Conference, SocInfo 2013, Kyoto, Japan, November 25-27, 2013, Proceedings</p

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications
    corecore