2,509 research outputs found

    Deep Long Short-term Memory Structures Model Temporal Dependencies Improving Cognitive Workload Estimation

    Get PDF
    Using deeply recurrent neural networks to account for temporal dependence in electroencephalograph (EEG)-based workload estimation is shown to considerably improve day-to-day feature stationarity resulting in significantly higher accuracy (p \u3c .0001) than classifiers which do not consider the temporal dependence encoded within the EEG time-series signal. This improvement is demonstrated by training several deep Recurrent Neural Network (RNN) models including Long Short-Term Memory (LSTM) architectures, a feedforward Artificial Neural Network (ANN), and Support Vector Machine (SVM) models on data from six participants who each perform several Multi-Attribute Task Battery (MATB) sessions on five separate days spread out over a month-long period. Each participant-specific classifier is trained on the first four days of data and tested using the fifth’s. Average classification accuracy of 93.0% is achieved using a deep LSTM architecture. These results represent a 59% decrease in error compared to the best previously published results for this dataset. This study additionally evaluates the significance of new features: all combinations of mean, variance, skewness, and kurtosis of EEG frequency-domain power distributions. Mean and variance are statistically significant features, while skewness and kurtosis are not. The overall performance of this approach is high enough to warrant evaluation for inclusion in operational systems

    Breaking Down the Barriers To Operator Workload Estimation: Advancing Algorithmic Handling of Temporal Non-Stationarity and Cross-Participant Differences for EEG Analysis Using Deep Learning

    Get PDF
    This research focuses on two barriers to using EEG data for workload assessment: day-to-day variability, and cross- participant applicability. Several signal processing techniques and deep learning approaches are evaluated in multi-task environments. These methods account for temporal, spatial, and frequential data dependencies. Variance of frequency- domain power distributions for cross-day workload classification is statistically significant. Skewness and kurtosis are not significant in an environment absent workload transitions, but are salient with transitions present. LSTMs improve day- to-day feature stationarity, decreasing error by 59% compared to previous best results. A multi-path convolutional recurrent model using bi-directional, residual recurrent layers significantly increases predictive accuracy and decreases cross-participant variance. Deep learning regression approaches are applied to a multi-task environment with workload transitions. Accounting for temporal dependence significantly reduces error and increases correlation compared to baselines. Visualization techniques for LSTM feature saliency are developed to understand EEG analysis model biases

    Systematic Review of Experimental Paradigms and Deep Neural Networks for Electroencephalography-Based Cognitive Workload Detection

    Full text link
    This article summarizes a systematic review of the electroencephalography (EEG)-based cognitive workload (CWL) estimation. The focus of the article is twofold: identify the disparate experimental paradigms used for reliably eliciting discreet and quantifiable levels of cognitive load and the specific nature and representational structure of the commonly used input formulations in deep neural networks (DNNs) used for signal classification. The analysis revealed a number of studies using EEG signals in its native representation of a two-dimensional matrix for offline classification of CWL. However, only a few studies adopted an online or pseudo-online classification strategy for real-time CWL estimation. Further, only a couple of interpretable DNNs and a single generative model were employed for cognitive load detection till date during this review. More often than not, researchers were using DNNs as black-box type models. In conclusion, DNNs prove to be valuable tools for classifying EEG signals, primarily due to the substantial modeling power provided by the depth of their network architecture. It is further suggested that interpretable and explainable DNN models must be employed for cognitive workload estimation since existing methods are limited in the face of the non-stationary nature of the signal.Comment: 10 Pages, 4 figure

    Cross-Participant EEG-Based Assessment of Cognitive Workload Using Multi-Path Convolutional Recurrent Neural Networks

    Get PDF
    Applying deep learning methods to electroencephalograph (EEG) data for cognitive state assessment has yielded improvements over previous modeling methods. However, research focused on cross-participant cognitive workload modeling using these techniques is underrepresented. We study the problem of cross-participant state estimation in a non-stimulus-locked task environment, where a trained model is used to make workload estimates on a new participant who is not represented in the training set. Using experimental data from the Multi-Attribute Task Battery (MATB) environment, a variety of deep neural network models are evaluated in the trade-space of computational efficiency, model accuracy, variance and temporal specificity yielding three important contributions: (1) The performance of ensembles of individually-trained models is statistically indistinguishable from group-trained methods at most sequence lengths. These ensembles can be trained for a fraction of the computational cost compared to group-trained methods and enable simpler model updates. (2) While increasing temporal sequence length improves mean accuracy, it is not sufficient to overcome distributional dissimilarities between individuals’ EEG data, as it results in statistically significant increases in cross-participant variance. (3) Compared to all other networks evaluated, a novel convolutional-recurrent model using multi-path subnetworks and bi-directional, residual recurrent layers resulted in statistically significant increases in predictive accuracy and decreases in cross-participant variance

    A Driving Performance Forecasting System Based on Brain Dynamic State Analysis Using 4-D Convolutional Neural Networks.

    Full text link
    Vehicle accidents are the primary cause of fatalities worldwide. Most often, experiencing fatigue on the road leads to operator errors and behavioral lapses. Thus, there is a need to predict the cognitive state of drivers, particularly their fatigue level. Electroencephalography (EEG) has been demonstrated to be effective for monitoring changes in the human brain state and behavior. Thirty-seven subjects participated in this driving experiment and performed a perform lane-keeping task in a visual-reality environment. Three domains, namely, frequency, temporal, and 2-D spatial information, of the EEG channel location were comprehensively considered. A 4-D convolutional neural-network (4-D CNN) algorithm was then proposed to associate all information from the EEG signals and the changes in the human state and behavioral performance. A 4-D CNN achieves superior forecasting performance over 2-D CNN, 3-D CNN, and shallow networks. The results showed a 3.82% improvement in the root mean-square error, a 3.45% improvement in the error rate, and a 11.98% improvement in the correlation coefficient with 4-D CNN compared with 3-D CNN. The 4-D CNN algorithm extracts the significant θ and alpha activations in the frontal and posterior cingulate cortices under distinct fatigue levels. This work contributes to enhancing our understanding of deep learning methods in the analysis of EEG signals. We even envision that deep learning might serve as a bridge between translation neuroscience and further real-world applications

    Machine Learning Methods for functional Near Infrared Spectroscopy

    Get PDF
    Identification of user state is of interest in a wide range of disciplines that fall under the umbrella of human machine interaction. Functional Near Infra-Red Spectroscopy (fNIRS) device is a relatively new device that enables inference of brain activity through non-invasively pulsing infra-red light into the brain. The fNIRS device is particularly useful as it has a better spatial resolution than the Electroencephalograph (EEG) device that is most commonly used in Human Computer Interaction studies under ecologically valid settings. But this key advantage of fNIRS device is underutilized in current literature in the fNIRS domain. We propose machine learning methods that capture this spatial nature of the human brain activity using a novel preprocessing method that uses `Region of Interest\u27 based feature extraction. Experiments show that this method outperforms the F1 score achieved previously in classifying `low\u27 vs `high\u27 valence state of a user. We further our analysis by applying a Convolutional Neural Network (CNN) to the fNIRS data, thus preserving the spatial structure of the data and treating the data similar to a series of images to be classified. Going further, we use a combination of CNN and Long Short-Term Memory (LSTM) to capture the spatial and temporal behavior of the fNIRS data, thus treating it similar to a video classification problem. We show that this method improves upon the accuracy previously obtained by valence classification methods using EEG or fNIRS devices. Finally, we apply the above model to a problem in classifying combined task-load and performance in an across-subject, across-task scenario of a Human Machine Teaming environment in order to achieve optimal productivity of the system

    Automated Detection and Mitigation of Inefficient Visual Searching Using Electroencephalography and Machine Learning

    Get PDF
    Decisions made during the high-stress and fast-paced operations of the military are extremely prone to cognitive biases. A commonly known cognitive bias is a confirmation bias, or the inappropriate bolstering of an unknown hypothesis. One such critical military operation that can fall prey to a confirmation bias is a visual search. During a visual search, a military operator must perform a visual scan of an environment for a specific target. However, the visual search process can fall prey to the same confirmation bias which can cause inefficient searches. This study elicits inefficient visual search patterns and applies various mitigation techniques in an effort to improve the efficiency of the searches. The effects of the various mitigations are studied and the most effective mitigations are determined. Machine learning models are trained to find the relationship between Electroencephalography (EEG) signals and inefficient visual searching
    • …
    corecore