405 research outputs found

    Multimodal human hand motion sensing and analysis - a review

    Get PDF

    Learning-based robotic manipulation for dynamic object handling : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechatronic Engineering at the School of Food and Advanced Technology, Massey University, Turitea Campus, Palmerston North, New Zealand

    Get PDF
    Figures are re-used in this thesis with permission of their respective publishers or under a Creative Commons licence.Recent trends have shown that the lifecycles and production volumes of modern products are shortening. Consequently, many manufacturers subject to frequent change prefer flexible and reconfigurable production systems. Such schemes are often achieved by means of manual assembly, as conventional automated systems are perceived as lacking flexibility. Production lines that incorporate human workers are particularly common within consumer electronics and small appliances. Artificial intelligence (AI) is a possible avenue to achieve smart robotic automation in this context. In this research it is argued that a robust, autonomous object handling process plays a crucial role in future manufacturing systems that incorporate robotics—key to further closing the gap between manual and fully automated production. Novel object grasping is a difficult task, confounded by many factors including object geometry, weight distribution, friction coefficients and deformation characteristics. Sensing and actuation accuracy can also significantly impact manipulation quality. Another challenge is understanding the relationship between these factors, a specific grasping strategy, the robotic arm and the employed end-effector. Manipulation has been a central research topic within robotics for many years. Some works focus on design, i.e. specifying a gripper-object interface such that the effects of imprecise gripper placement and other confounding control-related factors are mitigated. Many universal robotic gripper designs have been considered, including 3-fingered gripper designs, anthropomorphic grippers, granular jamming end-effectors and underactuated mechanisms. While such approaches have maintained some interest, contemporary works predominantly utilise machine learning in conjunction with imaging technologies and generic force-closure end-effectors. Neural networks that utilise supervised and unsupervised learning schemes with an RGB or RGB-D input make up the bulk of publications within this field. Though many solutions have been studied, automatically generating a robust grasp configuration for objects not known a priori, remains an open-ended problem. An element of this issue relates to a lack of objective performance metrics to quantify the effectiveness of a solution—which has traditionally driven the direction of community focus by highlighting gaps in the state-of-the-art. This research employs monocular vision and deep learning to generate—and select from—a set of hypothesis grasps. A significant portion of this research relates to the process by which a final grasp is selected. Grasp synthesis is achieved by sampling the workspace using convolutional neural networks trained to recognise prospective grasp areas. Each potential pose is evaluated by the proposed method in conjunction with other input modalities—such as load-cells and an alternate perspective. To overcome human bias and build upon traditional metrics, scores are established to objectively quantify the quality of an executed grasp trial. Learning frameworks that aim to maximise for these scores are employed in the selection process to improve performance. The proposed methodology and associated metrics are empirically evaluated. A physical prototype system was constructed, employing a Dobot Magician robotic manipulator, vision enclosure, imaging system, conveyor, sensing unit and control system. Over 4,000 trials were conducted utilising 100 objects. Experimentation showed that robotic manipulation quality could be improved by 10.3% when selecting to optimise for the proposed metrics—quantified by a metric related to translational error. Trials further demonstrated a grasp success rate of 99.3% for known objects and 98.9% for objects for which a priori information is unavailable. For unknown objects, this equated to an improvement of approximately 10% relative to other similar methodologies in literature. A 5.3% reduction in grasp rate was observed when removing the metrics as selection criteria for the prototype system. The system operated at approximately 1 Hz when contemporary hardware was employed. Experimentation demonstrated that selecting a grasp pose based on the proposed metrics improved grasp rates by up to 4.6% for known objects and 2.5% for unknown objects—compared to selecting for grasp rate alone. This project was sponsored by the Richard and Mary Earle Technology Trust, the Ken and Elizabeth Powell Bursary and the Massey University Foundation. Without the financial support provided by these entities, it would not have been possible to construct the physical robotic system used for testing and experimentation. This research adds to the field of robotic manipulation, contributing to topics on grasp-induced error analysis, post-grasp error minimisation, grasp synthesis framework design and general grasp synthesis. Three journal publications and one IEEE Xplore paper have been published as a result of this research

    Learning Multi-step Robotic Manipulation Tasks through Visual Planning

    Get PDF
    Multi-step manipulation tasks in unstructured environments are extremely challenging for a robot to learn. Such tasks interlace high-level reasoning that consists of the expected states that can be attained to achieve an overall task and low-level reasoning that decides what actions will yield these states. A model-free deep reinforcement learning method is proposed to learn multi-step manipulation tasks. This work introduces a novel Generative Residual Convolutional Neural Network (GR-ConvNet) model that can generate robust antipodal grasps from n-channel image input at real-time speeds (20ms). The proposed model architecture achieved a state-of-the-art accuracy on three standard grasping datasets. The adaptability of the proposed approach is demonstrated by directly transferring the trained model to a 7 DoF robotic manipulator with a grasp success rate of 95.4% and 93.0% on novel household and adversarial objects, respectively. A novel Robotic Manipulation Network (RoManNet) is introduced, which is a vision-based model architecture, to learn the action-value functions and predict manipulation action candidates. A Task Progress based Gaussian (TPG) reward function is defined to compute the reward based on actions that lead to successful motion primitives and progress towards the overall task goal. To balance the ratio of exploration/exploitation, this research introduces a Loss Adjusted Exploration (LAE) policy that determines actions from the action candidates according to the Boltzmann distribution of loss estimates. The effectiveness of the proposed approach is demonstrated by training RoManNet to learn several challenging multi-step robotic manipulation tasks in both simulation and real-world. Experimental results show that the proposed method outperforms the existing methods and achieves state-of-the-art performance in terms of success rate and action efficiency. The ablation studies show that TPG and LAE are especially beneficial for tasks like multiple block stacking

    A Secure and Efficient Multi-Object Grasping Detection Approach for Robotic Arms

    Full text link
    Robotic arms are widely used in automatic industries. However, with wide applications of deep learning in robotic arms, there are new challenges such as the allocation of grasping computing power and the growing demand for security. In this work, we propose a robotic arm grasping approach based on deep learning and edge-cloud collaboration. This approach realizes the arbitrary grasp planning of the robot arm and considers the grasp efficiency and information security. In addition, the encoder and decoder trained by GAN enable the images to be encrypted while compressing, which ensures the security of privacy. The model achieves 92% accuracy on the OCID dataset, the image compression ratio reaches 0.03%, and the structural difference value is higher than 0.91

    Improved Deep Neural Networks for Generative Robotic Grasping

    Get PDF
    This thesis provides a thorough evaluation of current state-of-the-art robotic grasping methods and contributes to a subset of data-driven grasp estimation approaches, termed generative models. These models aim to directly generate grasp region proposals from a given image without the need for a separate analysis and ranking step, which can be computationally expensive. This approach allows for fully end-to-end training of a model and quick closed-loop operation of a robot arm. A number of limitations are identified within these generative models, which are identified and addressed. Contributions are proposed that directly target each stage of the training pipeline that help to form accurate grasp proposals and generalise better to unseen objects. Firstly, inspired by theories of object manipulation within the mammalian visual system, the use of multi-task learning in existing generative architectures is evaluated. This aims to improve the performance of grasping algorithms when presented with impoverished colour (RGB) data by training models to perform simultaneous tasks such as object categorisation, saliency detection, and depth reconstruction. Secondly, a novel loss function is introduced which improves overall performance by rewarding the network to focus only on learning grasps at suitable positions. This reduces overall training times and results in better performance on fewer training examples. The last contribution analyses the problems with the most common metric used for evaluating and comparing offline performance between different grasping models and algorithms. To this end, a Gaussian method of representing ground-truth labelled grasps is put forward, which optimal grasp locations tested in a simulated grasping environment. The combination of these novel additions to generative models results in improved grasp success, accuracy, and performance on common benchmark datasets compared to previous approaches. Furthermore, the efficacy of these contributions is also tested when transferred to a physical robotic arm, demonstrating the ability to effectively grasp previously unseen 3D printed objects of varying complexity and difficulty without the need for domain adaptation. Finally, the future directions are discussed for generative convolutional models within the overall field of robotic grasping
    • …
    corecore