30,127 research outputs found

    Monte Carlo dropout for uncertainty estimation and motor imagery classification

    Get PDF
    Motor Imagery (MI)-based Brain–Computer Interfaces (BCIs) have been widely used as an alternative communication channel to patients with severe motor disabilities, achieving high classification accuracy through machine learning techniques. Recently, deep learning techniques have spotlighted the state-of-the-art of MI-based BCIs. These techniques still lack strategies to quantify predictive uncertainty and may produce overconfident predictions. In this work, methods to enhance the performance of existing MI-based BCIs are proposed in order to obtain a more reliable system for real application scenarios. First, the Monte Carlo dropout (MCD) method is proposed on MI deep neural models to improve classification and provide uncertainty estimation. This approach was implemented using Shallow Convolutional Neural Network (SCNN-MCD) and with an ensemble model (E-SCNN-MCD). As another contribution, to discriminate MI task predictions of high uncertainty, a threshold approach is introduced and tested for both SCNN-MCD and E-SCNN-MCD approaches. The BCI Competition IV Databases 2a and 2b were used to evaluate the proposed methods for both subject-specific and non-subject-specific strategies, obtaining encouraging results for MI recognition

    Classifying music perception and imagination using EEG

    Get PDF
    This study explored whether we could accurately classify perceived and imagined musical stimuli from EEG data. Successful EEG-based classification of what an individual is imagining could pave the way for novel communication techniques, such as brain-computer interfaces. We recorded EEG with a 64-channel BioSemi system while participants heard or imagined different musical stimuli. Using principal components analysis, we identified components common to both the perception and imagination conditions however, the time courses of the components did not allow for stimuli classification. We then applied deep learning techniques using a convolutional neural network. This technique enabled us to classify perception of music with a statistically significant accuracy of 28.7%, but we were unable to classify imagination of music (accuracy = 7.41%). Future studies should aim to determine which characteristics of music are driving perception classification rates, and to capitalize on these characteristics to raise imagination classification rates

    Spiking Neural Network for Augmenting Electroencephalographic Data for Brain Computer Interfaces

    Full text link
    With the advent of advanced machine learning methods, the performance of brain-computer interfaces (BCIs) has improved unprecedentedly. However, electroencephalography (EEG), a commonly used brain imaging method for BCI, is characterized by a tedious experimental setup, frequent data loss due to artifacts, and is time consuming for bulk trial recordings to take advantage of the capabilities of deep learning classifiers. Some studies have tried to address this issue by generating artificial EEG signals. However, a few of these methods are limited in retaining the prominent features or biomarker of the signal. And, other deep learning-based generative methods require a huge number of samples for training, and a majority of these models can handle data augmentation of one category or class of data at any training session. Therefore, there exists a necessity for a generative model that can generate synthetic EEG samples with as few available trials as possible and generate multi-class while retaining the biomarker of the signal. Since EEG signal represents an accumulation of action potentials from neuronal populations beneath the scalp surface and as spiking neural network (SNN), a biologically closer artificial neural network, communicates via spiking behavior, we propose an SNN-based approach using surrogate-gradient descent learning to reconstruct and generate multi-class artificial EEG signals from just a few original samples. The network was employed for augmenting motor imagery (MI) and steady-state visually evoked potential (SSVEP) data. These artificial data are further validated through classification and correlation metrics to assess its resemblance with original data and in-turn enhanced the MI classification performance

    Upper Limb Movement Execution Classification using Electroencephalography for Brain Computer Interface

    Full text link
    An accurate classification of upper limb movements using electroencephalography (EEG) signals is gaining significant importance in recent years due to the prevalence of brain-computer interfaces. The upper limbs in the human body are crucial since different skeletal segments combine to make a range of motion that helps us in our trivial daily tasks. Decoding EEG-based upper limb movements can be of great help to people with spinal cord injury (SCI) or other neuro-muscular diseases such as amyotrophic lateral sclerosis (ALS), primary lateral sclerosis, and periodic paralysis. This can manifest in a loss of sensory and motor function, which could make a person reliant on others to provide care in day-to-day activities. We can detect and classify upper limb movement activities, whether they be executed or imagined using an EEG-based brain-computer interface (BCI). Toward this goal, we focus our attention on decoding movement execution (ME) of the upper limb in this study. For this purpose, we utilize a publicly available EEG dataset that contains EEG signal recordings from fifteen subjects acquired using a 61-channel EEG device. We propose a method to classify four ME classes for different subjects using spectrograms of the EEG data through pre-trained deep learning (DL) models. Our proposed method of using EEG spectrograms for the classification of ME has shown significant results, where the highest average classification accuracy (for four ME classes) obtained is 87.36%, with one subject achieving the best classification accuracy of 97.03%

    Graph Neural Networks on SPD Manifolds for Motor Imagery Classification: A Perspective from the Time-Frequency Analysis

    Full text link
    Motor imagery (MI) classification is one of the most widely-concern research topics in Electroencephalography (EEG)-based brain-computer interfaces (BCIs) with extensive industry value. The MI-EEG classifiers' tendency has changed fundamentally over the past twenty years, while classifiers' performance is gradually increasing. In particular, owing to the need for characterizing signals' non-Euclidean inherence, the first geometric deep learning (GDL) framework, Tensor-CSPNet, has recently emerged in the BCI study. In essence, Tensor-CSPNet is a deep learning-based classifier on the second-order statistics of EEGs. In contrast to the first-order statistics, using these second-order statistics is the classical treatment of EEG signals, and the discriminative information contained in these second-order statistics is adequate for MI-EEG classification. In this study, we present another GDL classifier for MI-EEG classification called Graph-CSPNet, using graph-based techniques to simultaneously characterize the EEG signals in both the time and frequency domains. It is realized from the perspective of the time-frequency analysis that profoundly influences signal processing and BCI studies. Contrary to Tensor-CSPNet, the architecture of Graph-CSPNet is further simplified with more flexibility to cope with variable time-frequency resolution for signal segmentation to capture the localized fluctuations. In the experiments, Graph-CSPNet is evaluated on subject-specific scenarios from two well-used MI-EEG datasets and produces near-optimal classification accuracies.Comment: 16 pages, 5 figures, 9 Tables; This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore