543 research outputs found

    Lessons Learned from a Decade of Providing Interactive, On-Demand High Performance Computing to Scientists and Engineers

    Full text link
    For decades, the use of HPC systems was limited to those in the physical sciences who had mastered their domain in conjunction with a deep understanding of HPC architectures and algorithms. During these same decades, consumer computing device advances produced tablets and smartphones that allow millions of children to interactively develop and share code projects across the globe. As the HPC community faces the challenges associated with guiding researchers from disciplines using high productivity interactive tools to effective use of HPC systems, it seems appropriate to revisit the assumptions surrounding the necessary skills required for access to large computational systems. For over a decade, MIT Lincoln Laboratory has been supporting interactive, on-demand high performance computing by seamlessly integrating familiar high productivity tools to provide users with an increased number of design turns, rapid prototyping capability, and faster time to insight. In this paper, we discuss the lessons learned while supporting interactive, on-demand high performance computing from the perspectives of the users and the team supporting the users and the system. Building on these lessons, we present an overview of current needs and the technical solutions we are building to lower the barrier to entry for new users from the humanities, social, and biological sciences.Comment: 15 pages, 3 figures, First Workshop on Interactive High Performance Computing (WIHPC) 2018 held in conjunction with ISC High Performance 2018 in Frankfurt, German

    Characterizing Deep-Learning I/O Workloads in TensorFlow

    Full text link
    The performance of Deep-Learning (DL) computing frameworks rely on the performance of data ingestion and checkpointing. In fact, during the training, a considerable high number of relatively small files are first loaded and pre-processed on CPUs and then moved to accelerator for computation. In addition, checkpointing and restart operations are carried out to allow DL computing frameworks to restart quickly from a checkpoint. Because of this, I/O affects the performance of DL applications. In this work, we characterize the I/O performance and scaling of TensorFlow, an open-source programming framework developed by Google and specifically designed for solving DL problems. To measure TensorFlow I/O performance, we first design a micro-benchmark to measure TensorFlow reads, and then use a TensorFlow mini-application based on AlexNet to measure the performance cost of I/O and checkpointing in TensorFlow. To improve the checkpointing performance, we design and implement a burst buffer. We find that increasing the number of threads increases TensorFlow bandwidth by a maximum of 2.3x and 7.8x on our benchmark environments. The use of the tensorFlow prefetcher results in a complete overlap of computation on accelerator and input pipeline on CPU eliminating the effective cost of I/O on the overall performance. The use of a burst buffer to checkpoint to a fast small capacity storage and copy asynchronously the checkpoints to a slower large capacity storage resulted in a performance improvement of 2.6x with respect to checkpointing directly to slower storage on our benchmark environment.Comment: Accepted for publication at pdsw-DISCS 201
    • …
    corecore