39 research outputs found

    Comparative Analysis of Segment Anything Model and U-Net for Breast Tumor Detection in Ultrasound and Mammography Images

    Full text link
    In this study, the main objective is to develop an algorithm capable of identifying and delineating tumor regions in breast ultrasound (BUS) and mammographic images. The technique employs two advanced deep learning architectures, namely U-Net and pretrained SAM, for tumor segmentation. The U-Net model is specifically designed for medical image segmentation and leverages its deep convolutional neural network framework to extract meaningful features from input images. On the other hand, the pretrained SAM architecture incorporates a mechanism to capture spatial dependencies and generate segmentation results. Evaluation is conducted on a diverse dataset containing annotated tumor regions in BUS and mammographic images, covering both benign and malignant tumors. This dataset enables a comprehensive assessment of the algorithm's performance across different tumor types. Results demonstrate that the U-Net model outperforms the pretrained SAM architecture in accurately identifying and segmenting tumor regions in both BUS and mammographic images. The U-Net exhibits superior performance in challenging cases involving irregular shapes, indistinct boundaries, and high tumor heterogeneity. In contrast, the pretrained SAM architecture exhibits limitations in accurately identifying tumor areas, particularly for malignant tumors and objects with weak boundaries or complex shapes. These findings highlight the importance of selecting appropriate deep learning architectures tailored for medical image segmentation. The U-Net model showcases its potential as a robust and accurate tool for tumor detection, while the pretrained SAM architecture suggests the need for further improvements to enhance segmentation performance

    Mammography

    Get PDF
    In this volume, the topics are constructed from a variety of contents: the bases of mammography systems, optimization of screening mammography with reference to evidence-based research, new technologies of image acquisition and its surrounding systems, and case reports with reference to up-to-date multimodality images of breast cancer. Mammography has been lagged in the transition to digital imaging systems because of the necessity of high resolution for diagnosis. However, in the past ten years, technical improvement has resolved the difficulties and boosted new diagnostic systems. We hope that the reader will learn the essentials of mammography and will be forward-looking for the new technologies. We want to express our sincere gratitude and appreciation?to all the co-authors who have contributed their work to this volume

    An investigation of a human in the loop approach to object recognition

    Get PDF
    For several decades researchers around the globe have been avidly investigating practical solutions to the enduring problem of understanding visual content within an image. One might think of the quest as an effort to emulate human visual system. Despite all the endeavours, the simplest of visual tasks to us humans, such as optical segmentation of objects, remain a significant challenge for machines. In a few occasions where a computer's processing power is adequate to accomplish the task, the issue of public alienation towards autonomous solutions to critical applications remains unresolved. The principal purpose of this thesis is to propose innovative computer vision, machine learning, and pattern recognition techniques that exploit abstract knowledge of human beings in practical models using facile yet effective methodologies. High-level information provided by users in the decision making loop of such interactive systems enhances the efficacy of vision algorithms, whilst simultaneously machines reduce users' labour by filtering results and completing mundane tasks on their behalf. In this thesis, we initially draw a vivid picture of interactive approaches to vision tasks prior to scrutinising relevant aspects of human in the loop methodologies and highlighting their current shortcomings in object recognition applications. Our survey of literature unveils that the difficulty in harnessing users' abstract knowledge is amongst major complications of human in the loop algorithms. We therefore propose two novel methodologies to capture and model such high-level sources of information. One solution builds innovative textual descriptors that are compatible with discriminative classifiers. The other is based on the random naive Bayes algorithm and is suitable for generative classification frameworks. We further investigate the infamous problem of fusing images' low-level and users' high-level information sources. Our next contribution is therefore a novel random forest based human in the loop framework that efficiently fuses visual features of images with user provided information for fast predictions and a superior classification performance. User abstract knowledge in this method is harnessed in shape of user's answers to perceptual questions about images. In contrast to generative Bayesian frameworks, this is a direct discriminative approach that enables information source fusion in the preliminary stages of the prediction process. We subsequently reveal inventive generative frameworks that model each source of information individually and determine the most effective for the purpose of class label prediction. We propose two innovative and intelligent human in the loop fusion algorithms. Our first algorithm is a modified naive Bayes greedy technique, while our second solution is based on a feedforward neural network. Through experiments on a variety of datasets, we show that our novel intelligent fusion methods of information source selection outperform their competitors in tasks of fine-grained visual categorisation. We additionally present methodologies to reduce unnecessary human involvement in mundane tasks by only focusing on cases where their invaluable abstract knowledge is of utter importance. Our proposed algorithm is based on information theory and recent image annotation techniques. It determines the most efficient sequence of information to obtain from humans involved in the decision making loop, in order to minimise their unnecessary engagement in routine tasks. This approach allows them to be concerned with more abstract functions instead. Our experimental results reveal faster achievement of peak performance in contrast to alternative random ranking systems. Our final major contribution in this thesis is a novel remedy for the curse of dimensionality in pattern recognition problems. It is theoretically based on mutual information and Fano's inequality. Our approach separates the most discriminative descriptors and has the capability to enhance the accuracy of classification algorithms. The process of selecting a subset of relevant features is vital for designing robust human in the loop vision models. Our selection techniques eliminate redundant and irrelevant visual and textual features, and therefore its influence on improvement of various human in the loop algorithms proves to be fundamental in our experiments

    An investigation of a human in the loop approach to object recognition

    Get PDF
    For several decades researchers around the globe have been avidly investigating practical solutions to the enduring problem of understanding visual content within an image. One might think of the quest as an effort to emulate human visual system. Despite all the endeavours, the simplest of visual tasks to us humans, such as optical segmentation of objects, remain a significant challenge for machines. In a few occasions where a computer's processing power is adequate to accomplish the task, the issue of public alienation towards autonomous solutions to critical applications remains unresolved. The principal purpose of this thesis is to propose innovative computer vision, machine learning, and pattern recognition techniques that exploit abstract knowledge of human beings in practical models using facile yet effective methodologies. High-level information provided by users in the decision making loop of such interactive systems enhances the efficacy of vision algorithms, whilst simultaneously machines reduce users' labour by filtering results and completing mundane tasks on their behalf. In this thesis, we initially draw a vivid picture of interactive approaches to vision tasks prior to scrutinising relevant aspects of human in the loop methodologies and highlighting their current shortcomings in object recognition applications. Our survey of literature unveils that the difficulty in harnessing users' abstract knowledge is amongst major complications of human in the loop algorithms. We therefore propose two novel methodologies to capture and model such high-level sources of information. One solution builds innovative textual descriptors that are compatible with discriminative classifiers. The other is based on the random naive Bayes algorithm and is suitable for generative classification frameworks. We further investigate the infamous problem of fusing images' low-level and users' high-level information sources. Our next contribution is therefore a novel random forest based human in the loop framework that efficiently fuses visual features of images with user provided information for fast predictions and a superior classification performance. User abstract knowledge in this method is harnessed in shape of user's answers to perceptual questions about images. In contrast to generative Bayesian frameworks, this is a direct discriminative approach that enables information source fusion in the preliminary stages of the prediction process. We subsequently reveal inventive generative frameworks that model each source of information individually and determine the most effective for the purpose of class label prediction. We propose two innovative and intelligent human in the loop fusion algorithms. Our first algorithm is a modified naive Bayes greedy technique, while our second solution is based on a feedforward neural network. Through experiments on a variety of datasets, we show that our novel intelligent fusion methods of information source selection outperform their competitors in tasks of fine-grained visual categorisation. We additionally present methodologies to reduce unnecessary human involvement in mundane tasks by only focusing on cases where their invaluable abstract knowledge is of utter importance. Our proposed algorithm is based on information theory and recent image annotation techniques. It determines the most efficient sequence of information to obtain from humans involved in the decision making loop, in order to minimise their unnecessary engagement in routine tasks. This approach allows them to be concerned with more abstract functions instead. Our experimental results reveal faster achievement of peak performance in contrast to alternative random ranking systems. Our final major contribution in this thesis is a novel remedy for the curse of dimensionality in pattern recognition problems. It is theoretically based on mutual information and Fano's inequality. Our approach separates the most discriminative descriptors and has the capability to enhance the accuracy of classification algorithms. The process of selecting a subset of relevant features is vital for designing robust human in the loop vision models. Our selection techniques eliminate redundant and irrelevant visual and textual features, and therefore its influence on improvement of various human in the loop algorithms proves to be fundamental in our experiments

    Characterization of alar ligament on 3.0T MRI: a cross-sectional study in IIUM Medical Centre, Kuantan

    Get PDF
    INTRODUCTION: The main purpose of the study is to compare the normal anatomy of alar ligament on MRI between male and female. The specific objectives are to assess the prevalence of alar ligament visualized on MRI, to describe its characteristics in term of its course, shape and signal homogeneity and to find differences in alar ligament signal intensity between male and female. This study also aims to determine the association between the heights of respondents with alar ligament signal intensity and dimensions. MATERIALS & METHODS: 50 healthy volunteers were studied on 3.0T MR scanner Siemens Magnetom Spectra using 2-mm proton density, T2 and fat-suppression sequences. Alar ligament is depicted in 3 planes and the visualization and variability of the ligament courses, shapes and signal intensity characteristics were determined. The alar ligament dimensions were also measured. RESULTS: Alar ligament was best depicted in coronal plane, followed by sagittal and axial planes. The orientations were laterally ascending in most of the subjects (60%), predominantly oval in shaped (54%) and 67% showed inhomogenous signal. No significant difference of alar ligament signal intensity between male and female respondents. No significant association was found between the heights of the respondents with alar ligament signal intensity and dimensions. CONCLUSION: Employing a 3.0T MR scanner, the alar ligament is best portrayed on coronal plane, followed by sagittal and axial planes. However, tremendous variability of alar ligament as depicted in our data shows that caution needs to be exercised when evaluating alar ligament, especially during circumstances of injury
    corecore