45,467 research outputs found

    Machine learning based hyperspectral image analysis: A survey

    Full text link
    Hyperspectral sensors enable the study of the chemical properties of scene materials remotely for the purpose of identification, detection, and chemical composition analysis of objects in the environment. Hence, hyperspectral images captured from earth observing satellites and aircraft have been increasingly important in agriculture, environmental monitoring, urban planning, mining, and defense. Machine learning algorithms due to their outstanding predictive power have become a key tool for modern hyperspectral image analysis. Therefore, a solid understanding of machine learning techniques have become essential for remote sensing researchers and practitioners. This paper reviews and compares recent machine learning-based hyperspectral image analysis methods published in literature. We organize the methods by the image analysis task and by the type of machine learning algorithm, and present a two-way mapping between the image analysis tasks and the types of machine learning algorithms that can be applied to them. The paper is comprehensive in coverage of both hyperspectral image analysis tasks and machine learning algorithms. The image analysis tasks considered are land cover classification, target detection, unmixing, and physical parameter estimation. The machine learning algorithms covered are Gaussian models, linear regression, logistic regression, support vector machines, Gaussian mixture model, latent linear models, sparse linear models, Gaussian mixture models, ensemble learning, directed graphical models, undirected graphical models, clustering, Gaussian processes, Dirichlet processes, and deep learning. We also discuss the open challenges in the field of hyperspectral image analysis and explore possible future directions

    Adversarial Attacks and Defences: A Survey

    Full text link
    Deep learning has emerged as a strong and efficient framework that can be applied to a broad spectrum of complex learning problems which were difficult to solve using the traditional machine learning techniques in the past. In the last few years, deep learning has advanced radically in such a way that it can surpass human-level performance on a number of tasks. As a consequence, deep learning is being extensively used in most of the recent day-to-day applications. However, security of deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify the output. In recent times, different types of adversaries based on their threat model leverage these vulnerabilities to compromise a deep learning system where adversaries have high incentives. Hence, it is extremely important to provide robustness to deep learning algorithms against these adversaries. However, there are only a few strong countermeasures which can be used in all types of attack scenarios to design a robust deep learning system. In this paper, we attempt to provide a detailed discussion on different types of adversarial attacks with various threat models and also elaborate the efficiency and challenges of recent countermeasures against them

    Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company Independent Feature Vectors

    Full text link
    As companies increase their efforts in retaining customers, being able to predict accurately ahead of time, whether a customer will churn in the foreseeable future is an extremely powerful tool for any marketing team. The paper describes in depth the application of Deep Learning in the problem of churn prediction. Using abstract feature vectors, that can generated on any subscription based company's user event logs, the paper proves that through the use of the intrinsic property of Deep Neural Networks (learning secondary features in an unsupervised manner), the complete pipeline can be applied to any subscription based company with extremely good churn predictive performance. Furthermore the research documented in the paper was performed for Framed Data (a company that sells churn prediction as a service for other companies) in conjunction with the Data Science Institute at Lancaster University, UK. This paper is the intellectual property of Framed Data.Comment: 23 pages, 14 figure

    Feature Graph Architectures

    Full text link
    In this article we propose feature graph architectures (FGA), which are deep learning systems employing a structured initialisation and training method based on a feature graph which facilitates improved generalisation performance compared with a standard shallow architecture. The goal is to explore alternative perspectives on the problem of deep network training. We evaluate FGA performance for deep SVMs on some experimental datasets, and show how generalisation and stability results may be derived for these models. We describe the effect of permutations on the model accuracy, and give a criterion for the optimal permutation in terms of feature correlations. The experimental results show that the algorithm produces robust and significant test set improvements over a standard shallow SVM training method for a range of datasets. These gains are achieved with a moderate increase in time complexity.Comment: 9 pages, with 5 pages of supplementary material (appendices

    Confidential Inference via Ternary Model Partitioning

    Full text link
    Today's cloud vendors are competing to provide various offerings to simplify and accelerate AI service deployment. However, cloud users always have concerns about the confidentiality of their runtime data, which are supposed to be processed on third-party's compute infrastructures. Information disclosure of user-supplied data may jeopardize users' privacy and breach increasingly stringent data protection regulations. In this paper, we systematically investigate the life cycles of inference inputs in deep learning image classification pipelines and understand how the information could be leaked. Based on the discovered insights, we develop a Ternary Model Partitioning mechanism and bring trusted execution environments to mitigate the identified information leakages. Our research prototype consists of two co-operative components: (1) Model Assessment Framework, a local model evaluation and partitioning tool that assists cloud users in deployment preparation; (2) Infenclave, an enclave-based model serving system for online confidential inference in the cloud. We have conducted comprehensive security and performance evaluation on three representative ImageNet-level deep learning models with different network depths and architectural complexity. Our results demonstrate the feasibility of launching confidential inference services in the cloud with maximized confidentiality guarantees and low performance costs

    Unified Backpropagation for Multi-Objective Deep Learning

    Full text link
    A common practice in most of deep convolutional neural architectures is to employ fully-connected layers followed by Softmax activation to minimize cross-entropy loss for the sake of classification. Recent studies show that substitution or addition of the Softmax objective to the cost functions of support vector machines or linear discriminant analysis is highly beneficial to improve the classification performance in hybrid neural networks. We propose a novel paradigm to link the optimization of several hybrid objectives through unified backpropagation. This highly alleviates the burden of extensive boosting for independent objective functions or complex formulation of multiobjective gradients. Hybrid loss functions are linked by basic probability assignment from evidence theory. We conduct our experiments for a variety of scenarios and standard datasets to evaluate the advantage of our proposed unification approach to deliver consistent improvements into the classification performance of deep convolutional neural networks

    Classifying and Visualizing Motion Capture Sequences using Deep Neural Networks

    Full text link
    The gesture recognition using motion capture data and depth sensors has recently drawn more attention in vision recognition. Currently most systems only classify dataset with a couple of dozens different actions. Moreover, feature extraction from the data is often computational complex. In this paper, we propose a novel system to recognize the actions from skeleton data with simple, but effective, features using deep neural networks. Features are extracted for each frame based on the relative positions of joints (PO), temporal differences (TD), and normalized trajectories of motion (NT). Given these features a hybrid multi-layer perceptron is trained, which simultaneously classifies and reconstructs input data. We use deep autoencoder to visualize learnt features, and the experiments show that deep neural networks can capture more discriminative information than, for instance, principal component analysis can. We test our system on a public database with 65 classes and more than 2,000 motion sequences. We obtain an accuracy above 95% which is, to our knowledge, the state of the art result for such a large dataset.Comment: VISAPP 201

    Text Classification Algorithms: A Survey

    Full text link
    In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed

    Rapid Feature Learning with Stacked Linear Denoisers

    Full text link
    We investigate unsupervised pre-training of deep architectures as feature generators for "shallow" classifiers. Stacked Denoising Autoencoders (SdA), when used as feature pre-processing tools for SVM classification, can lead to significant improvements in accuracy - however, at the price of a substantial increase in computational cost. In this paper we create a simple algorithm which mimics the layer by layer training of SdAs. However, in contrast to SdAs, our algorithm requires no training through gradient descent as the parameters can be computed in closed-form. It can be implemented in less than 20 lines of MATLABTMand reduces the computation time from several hours to mere seconds. We show that our feature transformation reliably improves the results of SVM classification significantly on all our data sets - often outperforming SdAs and even deep neural networks in three out of four deep learning benchmarks.Comment: 10 page

    Spatio-Temporal Attention Pooling for Audio Scene Classification

    Full text link
    Acoustic scenes are rich and redundant in their content. In this work, we present a spatio-temporal attention pooling layer coupled with a convolutional recurrent neural network to learn from patterns that are discriminative while suppressing those that are irrelevant for acoustic scene classification. The convolutional layers in this network learn invariant features from time-frequency input. The bidirectional recurrent layers are then able to encode the temporal dynamics of the resulting convolutional features. Afterwards, a two-dimensional attention mask is formed via the outer product of the spatial and temporal attention vectors learned from two designated attention layers to weigh and pool the recurrent output into a final feature vector for classification. The network is trained with between-class examples generated from between-class data augmentation. Experiments demonstrate that the proposed method not only outperforms a strong convolutional neural network baseline but also sets new state-of-the-art performance on the LITIS Rouen dataset.Comment: To appear at the 20th Annual Conference of the International Speech Communication Association (INTERSPEECH 2019
    • …
    corecore