607 research outputs found

    Machine Learning in Tribology

    Get PDF
    Tribology has been and continues to be one of the most relevant fields, being present in almost all aspects of our lives. The understanding of tribology provides us with solutions for future technical challenges. At the root of all advances made so far are multitudes of precise experiments and an increasing number of advanced computer simulations across different scales and multiple physical disciplines. Based upon this sound and data-rich foundation, advanced data handling, analysis and learning methods can be developed and employed to expand existing knowledge. Therefore, modern machine learning (ML) or artificial intelligence (AI) methods provide opportunities to explore the complex processes in tribological systems and to classify or quantify their behavior in an efficient or even real-time way. Thus, their potential also goes beyond purely academic aspects into actual industrial applications. To help pave the way, this article collection aimed to present the latest research on ML or AI approaches for solving tribology-related issues generating true added value beyond just buzzwords. In this sense, this Special Issue can support researchers in identifying initial selections and best practice solutions for ML in tribology

    A Literature Review of Fault Diagnosis Based on Ensemble Learning

    Get PDF
    The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance

    RME-GAN: A Learning Framework for Radio Map Estimation based on Conditional Generative Adversarial Network

    Full text link
    Outdoor radio map estimation is an important tool for network planning and resource management in modern Internet of Things (IoT) and cellular systems. Radio map describes spatial signal strength distribution and provides network coverage information. A practical goal is to estimate fine-resolution radio maps from sparse radio strength measurements. However, non-uniformly positioned measurements and access obstacles can make it difficult for accurate radio map estimation (RME) and spectrum planning in many outdoor environments. In this work, we develop a two-phase learning framework for radio map estimation by integrating radio propagation model and designing a conditional generative adversarial network (cGAN). We first explore global information to extract the radio propagation patterns. We then focus on the local features to estimate the effect of shadowing on radio maps in order to train and optimize the cGAN. Our experimental results demonstrate the efficacy of the proposed framework for radio map estimation based on generative models from sparse observations in outdoor scenarios

    Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review

    Get PDF
    This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented

    비표지 고장 데이터와 유중가스분석데이터를 이용한 딥러닝기반 주변압기 고장진단 연구

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 기계항공공학부, 2021.8. 소재웅.오늘날 산업의 급속한 발전과 고도화로 인해 안전하고 신뢰할 수 있는 전력 계통에 대한 수요는 더욱 중요해지고 있다. 따라서 실제 산업 현장에서는 주변압기의 안전한 작동을 위해 상태를 정확하게 진단할 수 있는 prognostics and health management (PHM)와 같은 기술이 필요하다. 주변압기 진단을 위해 개발된 다양한 방법 중 인공지능(AI) 기반 접근법은 산업과 학계에서 많은 관심을 받고 있다. 더욱이 방대한 데이터와 함께 높은 성능을 달성하는 딥 러닝 기술은 주변압기 고장 진단의 학자들에게 높은 관심을 갖게 해줬다. 그 이유는 딥 러닝 기술이 시스템의 도메인 지식을 깊이 이해할 필요 없이 대량의 데이터만 주어진다면 복잡한 시스템이라도 사용자의 목적에 맞게 그 해답을 찾을 수 있기 때문에 딥 러닝에 대한 관심은 주변압기 고장 진단 분야에서 특히 두드러졌다. 그러나, 이러한 뛰어난 진단 성능은 아직 실제 주변압기 산업에서는 많은 관심을 얻고 있지는 못한 것으로 알려졌다. 그 이유는 산업현장의 비표지데이터와 소량의 고장데이터 때문에 우수한 딥러닝기반의 고장 진단 모델들을 개발하기 어렵다. 따라서 본 학위논문에서는 주변압기 산업에서 현재 대두되고 있는 세가지 이슈를 연구하였다. 1) 건전성 평면 시각화 이슈, 2) 데이터 부족 이슈, 3) 심각도 이슈 들을 극복하기 위한 딥 러닝 기반 고장 진단 연구를 진행하였다. 소개된 세가지 이슈들을 개선하기 위해 본 학위논문은 세 가지 연구를 제안하였다. 첫 번째 연구는 보조 감지 작업이 있는 준지도 자동 인코더를 통해 건전성 평면을 제안하였다. 제안된 방법은 변압기 열하 특성을 시각화 할 수 있다. 또한, 준지도 접근법을 활용하기 때문에 방대한 비표지데이터 그리고 소수의 표지데이터만으로 구현될 수 있다. 제안방법은 주변압기 건전성을 건전성 평면과 함께 시각화하고, 매우 적은 소수의 레이블 데이터만으로 주변압기 고장을 진단한다. 두 번째 연구는 규칙 기반 Duval 방법을 AI 기반 deep neural network (DNN)과 융합(bridge)하는 새로운 프레임워크를 제안하였다. 이 방법은 룰기반의 Duval을 사용하여 비표지데이터를 수도 레이블링한다 (pseudo-labeling). 또한, AI 기반 DNN은 정규화 기술과 매개 변수 전이 학습을 적용하여 노이즈가 있는 pseudo-label 데이터를 학습하는데 사용된다. 개발된 기술은 방대한양의 비표지데이터를 룰기반으로 일차적으로 진단한 결과와 소수의 실제 고장데이터와 함께 학습데이터로 훈련하였을 때 기존의 진단 방법보다 획기적인 향상을 가능케 한다. 끝으로, 세 번째 연구는 고장 타입을 진단할 뿐만 아니라 심각도 또한 진단하는 기술을 제안하였다. 이때 두 상태의 레이블링된 고장 타입과 심각도 사이에는 불균일한 데이터 분포로 이루어져 있다. 그 이유는 심각도의 경우 레이블링이 항상 되어 있지만 고장 타입의 경우는 실제 주변압기로부터 고장 타입 데이터를 얻기가 매우 어렵기 때문이다. 따라서, 본 연구에서 세번째로 개발한 기술은 오늘날 데이터 생성에 매우 우수한 성능을 달성하고 있는 generative adversarial network (GAN)를 통해 불균형한 두 상태를 균일화 작업을 수행하는 동시에 고장 모드와 심각도를 진단하는 모델을 개발하였다.Due to the rapid development and advancement of today’s industry, the demand for safe and reliable power distribution and transmission lines is becoming more critical; thus, prognostics and health management (hereafter, PHM) is becoming more important in the power transformer industry. Among various methods developed for power transformer diagnosis, the artificial intelligence (AI) based approach has received considerable interest from academics. Specifically, deep learning technology, which offers excellent performance when used with vast amounts of data, is also rapidly gaining the spotlight in the academic field of transformer fault diagnosis. The interest in deep learning has been especially noticed in the field of fault diagnosis, because deep learning algorithms can be applied to complex systems that have large amounts of data, without the need for a deep understanding of the domain knowledge of the system. However, the outstanding performance of these diagnosis methods has not yet gained much attention in the power transformer PHM industry. The reason is that a large amount of unlabeled and a small amount of fault data always restrict their deep-learning-based diagnosis methods in the power transformer PHM industry. Therefore, in this dissertation research, deep-learning-based fault diagnosis methods are developed to overcome three issues that currently prevent this type of diagnosis in industrial power transformers: 1) the visualization of health feature space issue, 2) the insufficient data issue, and 3) the severity issue. To cope with these challenges, this thesis is composed of three research thrusts. The first research thrust develops a health feature space via a semi-supervised autoencoder with an auxiliary detection task. The proposed method can visualize a monotonic health trendability of the transformer’s degradation properties. Further, thanks to the use of a semi-supervised approach, the method is applicable to situations with a large amount of unlabeled and a small amount labeled data (a situation common in industrial datasets). Next, the second research thrust proposes a new framework, that bridges the rule-based Duval method with an AI-based deep neural network (BDD). In this method, the rule-based Duval method is utilized to pseudo-label a large amount of unlabeled data. Furthermore, the AI-based DNN is used to apply regularization techniques and parameter transfer learning to learn the noisy pseudo-labelled data. Finally, the third thrust not only identifies fault types but also indicates a severity level. However, the balance between labeled fault types and the severity level is imbalanced in real-world data. Therefore, in the proposed method, diagnosis of fault types – with severity levels – under imbalanced conditions is addressed by utilizing a generative adversarial network with an auxiliary classifier. The validity of the proposed methods is demonstrated by studying massive unlabeled dissolved gas analysis (DGA) data, provided by the Korea Electric Power Company (KEPCO), and sparse labeled data, provided by the IEC TC 10 database. Each developed method could be used in industrial fields that use power transformers to monitor the health feature space, consider severity level, and diagnose transformer faults under extremely insufficient labeled fault data.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Scope and Overview 4 1.3 Dissertation Layout 7 Chapter 2 Literature Review 9 2.1 A Brief Overview of Rule-Based Fault Diagnosis 9 2.2 A Brief Overview of Conventional AI-Based Fault Diagnosis 11 Chapter 3 Extracting Health Feature Space via Semi-Supervised Autoencoder with an Auxiliary Task (SAAT) 13 3.1 Backgrounds of Semi-supervised autoencoder (SSAE) 15 3.1.1 Autoencoder: Unsupervised Feature Extraction 15 3.1.2 Softmax Classifier: Supervised Classification 17 3.1.3 Semi-supervised Autoencoder 18 3.2 Input DGA Data Preprocessing 20 3.3 SAAT-Based Fault Diagnosis Method 21 3.3.1 Roles of the Auxiliary Detection Task 23 3.3.2 Architecture of the Proposed SAAT 27 3.3.3 Health Feature Space Visualization 29 3.3.4 Overall Procedure of the Proposed SAAT-based Fault Diagnosis 30 3.4 Performance Evaluation of SAAT 31 3.4.1 Data Description and Implementation 31 3.4.2 An Outline of Four Comparative Studies and Quantitative Evaluation Metrics 33 3.4.3 Experimental Results and Discussion 36 3.5 Summary and Discussion 49 Chapter 4 Learning from Even a Weak Teacher: Bridging Rule-based Duval Weak Supervision and a Deep Neural Network (BDD) for Diagnosing Transformer 51 4.1 Backgrounds of BDD 53 4.1.1 Rule-based method: Duval Method 53 4.1.2 Deep learning Based Method: Deep Neural Network 54 4.1.3 Parameter Transfer 55 4.2 BDD Based Fault Diagnosis 56 4.2.1 Problem Statement 56 4.2.2 Framework of the Proposed BDD 57 4.2.3 Overall Procedure of BDD-based Fault Diagnosis 63 4.3 Performance Evaluation of the BDD 64 4.3.1 Description of Data and the DNN Architecture 64 4.3.2 Experimental Results and Discussion 66 4.4 Summary and Discussion 76 Chapter 5 Generative Adversarial Network with Embedding Severity DGA Level 79 5.1 Backgrounds of Generative Adversarial Network 81 5.2 GANES based Fault Diagnosis 82 5.2.1 Training Strategy of GANES 82 5.2.2 Overall procedure of GANES 87 5.3 Performance Evaluation of GANES 91 5.3.1 Description of Data 91 5.3.2 Outlines of Experiments 91 5.3.3 Preliminary Experimental Results of Various GANs 95 5.3.4 Experiments for the Effectiveness of Embedding Severity DGA Level 99 5.4 Summary and Discussion 105 Chapter 6 Conclusion 106 6.1 Contributions and Significance 106 6.2 Suggestions for Future Research 108 References 110 국문 초록 127박

    Fault Diagnosis of Rotating Machinery Bearings Based on Improved DCNN and WOA-DELM

    Get PDF
    A bearing is a critical component in the transmission of rotating machinery. However, due to prolonged exposure to heavy loads and high-speed environments, rolling bearings are highly susceptible to faults, Hence, it is crucial to enhance bearing fault diagnosis to ensure safe and reliable operation of rotating machinery. In order to achieve this, a rotating machinery fault diagnosis method based on a deep convolutional neural network (DCNN) and Whale Optimization Algorithm (WOA) optimized Deep Extreme Learning Machine (DELM) is proposed in this paper. DCNN is a combination of the Efficient Channel Attention Net (ECA-Net) and Bi-directional Long Short-Term Memory (BiLSTM). In this method, firstly, a DCNN classification network is constructed. The ECA-Net and BiLSTM are brought into the deep convolutional neural network to extract critical features. Next, the WOA is used to optimize the weight of the initial input layer of DELM to build the WOA-DELM classifier model. Finally, the features extracted by the Improved DCNN (IDCNN) are sent to the WOA-DELM model for bearing fault diagnosis. The diagnostic capability of the proposed IDCNN-WOA-DELM method was evaluated through multiple-condition fault diagnosis experiments using the CWRU-bearing dataset with various settings, and comparative tests against other methods were conducted as well. The results indicate that the proposed method demonstrates good diagnostic performance

    Exploiting gan as an oversampling method for imbalanced data augmentation with application to the fault diagnosis of an industrial robot

    Get PDF
    O diagnóstico inteligente de falhas baseado em aprendizagem máquina geralmente requer um conjunto de dados balanceados para produzir um desempenho aceitável. No entanto, a obtenção de dados quando o equipamento industrial funciona com falhas é uma tarefa desafiante, resultando frequentemente num desequilíbrio entre dados obtidos em condições nominais e com falhas. As técnicas de aumento de dados são das abordagens mais promissoras para mitigar este problema. Redes adversárias generativas (GAN) são um tipo de modelo generativo que consiste de um módulo gerador e de um discriminador. Por meio de aprendizagem adversária entre estes módulos, o gerador otimizado pode produzir padrões sintéticos que podem ser usados para amumento de dados. Investigamos se asGANpodem ser usadas como uma ferramenta de sobre amostra- -gem para compensar um conjunto de dados desequilibrado em uma tarefa de diagnóstico de falhas num manipulador robótico industrial. Realizaram-se uma série de experiências para validar a viabilidade desta abordagem. A abordagem é comparada com seis cenários, incluindo o método clássico de sobre amostragem SMOTE. Os resultados mostram que a GAN supera todos os cenários comparados. Para mitigar dois problemas reconhecidos no treino das GAN, ou seja, instabilidade de treino e colapso de modo, é proposto o seguinte. Propomos uma generalização da GAN de erro quadrado médio (MSE GAN) da Wasserstein GAN com penalidade de gradiente (WGAN-GP), referida como VGAN (GAN baseado numa matriz V) para mitigar a instabilidade de treino. Além disso, propomos um novo critério para rastrear o modelo mais adequado durante o treino. Experiências com o MNIST e no conjunto de dados do manipulador robótico industrial mostram que o VGAN proposto supera outros modelos competitivos. A rede adversária generativa com consistência de ciclo (CycleGAN) visa lidar com o colapso de modo, uma condição em que o gerador produz pouca ou nenhuma variabilidade. Investigamos a distância fatiada de Wasserstein (SWD) na CycleGAN. O SWD é avaliado tanto no CycleGAN incondicional quanto no CycleGAN condicional com e sem mecanismos de compressão e excitação. Mais uma vez, dois conjuntos de dados são avaliados, ou seja, o MNIST e o conjunto de dados do manipulador robótico industrial. Os resultados mostram que o SWD tem menor custo computacional e supera o CycleGAN convencional.Machine learning based intelligent fault diagnosis often requires a balanced data set for yielding an acceptable performance. However, obtaining faulty data from industrial equipment is challenging, often resulting in an imbalance between data acquired in normal conditions and data acquired in the presence of faults. Data augmentation techniques are among the most promising approaches to mitigate such issue. Generative adversarial networks (GAN) are a type of generative model consisting of a generator module and a discriminator. Through adversarial learning between these modules, the optimised generator can produce synthetic patterns that can be used for data augmentation. We investigate whether GAN can be used as an oversampling tool to compensate for an imbalanced data set in an industrial robot fault diagnosis task. A series of experiments are performed to validate the feasibility of this approach. The approach is compared with six scenarios, including the classical oversampling method (SMOTE). Results show that GAN outperforms all the compared scenarios. To mitigate two recognised issues in GAN training, i.e., instability and mode collapse, the following is proposed. We proposed a generalization of both mean sqaure error (MSE GAN) and Wasserstein GAN with gradient penalty (WGAN-GP), referred to as VGAN (the V-matrix based GAN) to mitigate training instability. Also, a novel criterion is proposed to keep track of the most suitable model during training. Experiments on both the MNIST and the industrial robot data set show that the proposed VGAN outperforms other competitive models. Cycle consistency generative adversarial network (CycleGAN) is aiming at dealing with mode collapse, a condition where the generator yields little to none variability. We investigate the sliced Wasserstein distance (SWD) for CycleGAN. SWD is evaluated in both the unconditional CycleGAN and the conditional CycleGAN with and without squeeze-and-excitation mechanisms. Again, two data sets are evaluated, i.e., the MNIST and the industrial robot data set. Results show that SWD has less computational cost and outperforms conventional CycleGAN

    Artificial Intelligence-based Technique for Fault Detection and Diagnosis of EV Motors: A Review

    Get PDF
    The motor drive system plays a significant role in the safety of electric vehicles as a bridge for power transmission. Meanwhile, to enhance the efficiency and stability of the drive system, more and more studies based on AI technology are devoted to the fault detection and diagnosis of the motor drive system. This paper reviews the application of AI techniques in motor fault detection and diagnosis in recent years. AI-based FDD is divided into two main steps: feature extraction and fault classification. The application of different signal processing methods in feature extraction is discussed. In particular, the application of traditional machine learning and deep learning algorithms for fault classification is presented in detail. In addition, the characteristics of all techniques reviewed are summarized. Finally, the latest developments, research gaps and future challenges in fault monitoring and diagnosis of motor faults are discussed
    corecore