5,277 research outputs found

    Accelerating Deterministic and Stochastic Binarized Neural Networks on FPGAs Using OpenCL

    Full text link
    Recent technological advances have proliferated the available computing power, memory, and speed of modern Central Processing Units (CPUs), Graphics Processing Units (GPUs), and Field Programmable Gate Arrays (FPGAs). Consequently, the performance and complexity of Artificial Neural Networks (ANNs) is burgeoning. While GPU accelerated Deep Neural Networks (DNNs) currently offer state-of-the-art performance, they consume large amounts of power. Training such networks on CPUs is inefficient, as data throughput and parallel computation is limited. FPGAs are considered a suitable candidate for performance critical, low power systems, e.g. the Internet of Things (IOT) edge devices. Using the Xilinx SDAccel or Intel FPGA SDK for OpenCL development environment, networks described using the high-level OpenCL framework can be accelerated on heterogeneous platforms. Moreover, the resource utilization and power consumption of DNNs can be further enhanced by utilizing regularization techniques that binarize network weights. In this paper, we introduce, to the best of our knowledge, the first FPGA-accelerated stochastically binarized DNN implementations, and compare them to implementations accelerated using both GPUs and FPGAs. Our developed networks are trained and benchmarked using the popular MNIST and CIFAR-10 datasets, and achieve near state-of-the-art performance, while offering a >16-fold improvement in power consumption, compared to conventional GPU-accelerated networks. Both our FPGA-accelerated determinsitic and stochastic BNNs reduce inference times on MNIST and CIFAR-10 by >9.89x and >9.91x, respectively.Comment: 4 pages, 3 figures, 1 tabl

    ReBNet: Residual Binarized Neural Network

    Full text link
    This paper proposes ReBNet, an end-to-end framework for training reconfigurable binary neural networks on software and developing efficient accelerators for execution on FPGA. Binary neural networks offer an intriguing opportunity for deploying large-scale deep learning models on resource-constrained devices. Binarization reduces the memory footprint and replaces the power-hungry matrix-multiplication with light-weight XnorPopcount operations. However, binary networks suffer from a degraded accuracy compared to their fixed-point counterparts. We show that the state-of-the-art methods for optimizing binary networks accuracy, significantly increase the implementation cost and complexity. To compensate for the degraded accuracy while adhering to the simplicity of binary networks, we devise the first reconfigurable scheme that can adjust the classification accuracy based on the application. Our proposition improves the classification accuracy by representing features with multiple levels of residual binarization. Unlike previous methods, our approach does not exacerbate the area cost of the hardware accelerator. Instead, it provides a tradeoff between throughput and accuracy while the area overhead of multi-level binarization is negligible.Comment: To Appear In The 26th IEEE International Symposium on Field-Programmable Custom Computing Machine

    Hardware-efficient on-line learning through pipelined truncated-error backpropagation in binary-state networks

    Get PDF
    Artificial neural networks (ANNs) trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the training phase, however, has attracted relatively little attention. In this paper, we describe a hardware-efficient on-line learning technique for feedforward multi-layer ANNs that is based on pipelined backpropagation. Learning is performed in parallel with inference in the forward pass, removing the need for an explicit backward pass and requiring no extra weight lookup. By using binary state variables in the feedforward network and ternary errors in truncated-error backpropagation, the need for any multiplications in the forward and backward passes is removed, and memory requirements for the pipelining are drastically reduced. Further reduction in addition operations owing to the sparsity in the forward neural and backpropagating error signal paths contributes to highly efficient hardware implementation. For proof-of-concept validation, we demonstrate on-line learning of MNIST handwritten digit classification on a Spartan 6 FPGA interfacing with an external 1Gb DDR2 DRAM, that shows small degradation in test error performance compared to an equivalently sized binary ANN trained off-line using standard back-propagation and exact errors. Our results highlight an attractive synergy between pipelined backpropagation and binary-state networks in substantially reducing computation and memory requirements, making pipelined on-line learning practical in deep networks.Comment: Now also consider 0/1 binary activations. Memory access statistics reporte

    FINN: A Framework for Fast, Scalable Binarized Neural Network Inference

    Full text link
    Research has shown that convolutional neural networks contain significant redundancy, and high classification accuracy can be obtained even when weights and activations are reduced from floating point to binary values. In this paper, we present FINN, a framework for building fast and flexible FPGA accelerators using a flexible heterogeneous streaming architecture. By utilizing a novel set of optimizations that enable efficient mapping of binarized neural networks to hardware, we implement fully connected, convolutional and pooling layers, with per-layer compute resources being tailored to user-provided throughput requirements. On a ZC706 embedded FPGA platform drawing less than 25 W total system power, we demonstrate up to 12.3 million image classifications per second with 0.31 {\mu}s latency on the MNIST dataset with 95.8% accuracy, and 21906 image classifications per second with 283 {\mu}s latency on the CIFAR-10 and SVHN datasets with respectively 80.1% and 94.9% accuracy. To the best of our knowledge, ours are the fastest classification rates reported to date on these benchmarks.Comment: To appear in the 25th International Symposium on Field-Programmable Gate Arrays, February 201

    Hardware-Efficient Structure of the Accelerating Module for Implementation of Convolutional Neural Network Basic Operation

    Full text link
    This paper presents a structural design of the hardware-efficient module for implementation of convolution neural network (CNN) basic operation with reduced implementation complexity. For this purpose we utilize some modification of the Winograd minimal filtering method as well as computation vectorization principles. This module calculate inner products of two consecutive segments of the original data sequence, formed by a sliding window of length 3, with the elements of a filter impulse response. The fully parallel structure of the module for calculating these two inner products, based on the implementation of a naive method of calculation, requires 6 binary multipliers and 4 binary adders. The use of the Winograd minimal filtering method allows to construct a module structure that requires only 4 binary multipliers and 8 binary adders. Since a high-performance convolutional neural network can contain tens or even hundreds of such modules, such a reduction can have a significant effect.Comment: 3 pages, 5 figure
    • …
    corecore