90 research outputs found

    Deep Visual Unsupervised Domain Adaptation for Classification Tasks:A Survey

    Get PDF

    Contrastive Domain Adaptation

    Get PDF
    AUTHOR ONLINE USE Personal Servers. Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published versions of their papers."Publisher PD

    Deep Clustering: A Comprehensive Survey

    Full text link
    Cluster analysis plays an indispensable role in machine learning and data mining. Learning a good data representation is crucial for clustering algorithms. Recently, deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks. Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering. To address this issue, in this paper we provide a comprehensive survey for deep clustering in views of data sources. With different data sources and initial conditions, we systematically distinguish the clustering methods in terms of methodology, prior knowledge, and architecture. Concretely, deep clustering methods are introduced according to four categories, i.e., traditional single-view deep clustering, semi-supervised deep clustering, deep multi-view clustering, and deep transfer clustering. Finally, we discuss the open challenges and potential future opportunities in different fields of deep clustering

    LLEDA - Lifelong Self-Supervised Domain Adaptation

    Get PDF
    Preprin

    HoMM: Higher-order Moment Matching for Unsupervised Domain Adaptation

    Full text link
    Minimizing the discrepancy of feature distributions between different domains is one of the most promising directions in unsupervised domain adaptation. From the perspective of distribution matching, most existing discrepancy-based methods are designed to match the second-order or lower statistics, which however, have limited expression of statistical characteristic for non-Gaussian distributions. In this work, we explore the benefits of using higher-order statistics (mainly refer to third-order and fourth-order statistics) for domain matching. We propose a Higher-order Moment Matching (HoMM) method, and further extend the HoMM into reproducing kernel Hilbert spaces (RKHS). In particular, our proposed HoMM can perform arbitrary-order moment tensor matching, we show that the first-order HoMM is equivalent to Maximum Mean Discrepancy (MMD) and the second-order HoMM is equivalent to Correlation Alignment (CORAL). Moreover, the third-order and the fourth-order moment tensor matching are expected to perform comprehensive domain alignment as higher-order statistics can approximate more complex, non-Gaussian distributions. Besides, we also exploit the pseudo-labeled target samples to learn discriminative representations in the target domain, which further improves the transfer performance. Extensive experiments are conducted, showing that our proposed HoMM consistently outperforms the existing moment matching methods by a large margin. Codes are available at \url{https://github.com/chenchao666/HoMM-Master}Comment: Accept by AAAI-2020, codes are available at https://github.com/chenchao666/HoMM-Maste

    Data Augmentation with norm-VAE and Selective Pseudo-Labelling for Unsupervised Domain Adaptation

    Get PDF
    We address the Unsupervised Domain Adaptation (UDA) problem in image classification from a new perspective. In contrast to most existing works which either align the data distributions or learn domain-invariant features, we directly learn a unified classifier for both the source and target domains in the high-dimensional homogeneous feature space without explicit domain alignment. To this end, we employ the effective Selective Pseudo-Labelling (SPL) technique to take advantage of the unlabelled samples in the target domain. Surprisingly, data distribution discrepancy across the source and target domains can be well handled by a computationally simple classifier (e.g., a shallow Multi-Layer Perceptron) trained in the original feature space. Besides, we propose a novel generative model norm-AE to generate synthetic features for the target domain as a data augmentation strategy to enhance the classifier training. Experimental results on several benchmark datasets demonstrate the pseudo-labelling strategy itself can lead to comparable performance to many state-of-the-art methods whilst the use of norm-AE for feature augmentation can further improve the performance in most cases. As a result, our proposed methods (i.e. naiveSPL and norm-AE-SPL) can achieve comparable performance with state-of-the-art methods with the average accuracy of 93.4% and 90.4% on Office-Caltech and ImageCLEF-DA datasets, and achieve competitive performance on Digits, Office31 and Office-Home datasets with the average accuracy of 97.2%, 87.6% and 68.6% respectively

    A Survey on Negative Transfer

    Full text link
    Transfer learning (TL) tries to utilize data or knowledge from one or more source domains to facilitate the learning in a target domain. It is particularly useful when the target domain has few or no labeled data, due to annotation expense, privacy concerns, etc. Unfortunately, the effectiveness of TL is not always guaranteed. Negative transfer (NT), i.e., the source domain data/knowledge cause reduced learning performance in the target domain, has been a long-standing and challenging problem in TL. Various approaches to handle NT have been proposed in the literature. However, this filed lacks a systematic survey on the formalization of NT, their factors and the algorithms that handle NT. This paper proposes to fill this gap. First, the definition of negative transfer is considered and a taxonomy of the factors are discussed. Then, near fifty representative approaches for handling NT are categorized and reviewed, from four perspectives: secure transfer, domain similarity estimation, distant transfer and negative transfer mitigation. NT in related fields, e.g., multi-task learning, lifelong learning, and adversarial attacks are also discussed
    • …
    corecore