7,098 research outputs found

    Deep Inference and Symmetry in Classical Proofs

    Get PDF
    In this thesis we see deductive systems for classical propositional and predicate logic which use deep inference, i.e. inference rules apply arbitrarily deep inside formulas, and a certain symmetry, which provides an involution on derivations. Like sequent systems, they have a cut rule which is admissible. Unlike sequent systems, they enjoy various new interesting properties. Not only the identity axiom, but also cut, weakening and even contraction are reducible to atomic form. This leads to inference rules that are local, meaning that the effort of applying them is bounded, and finitary, meaning that, given a conclusion, there is only a finite number of premises to choose from. The systems also enjoy new normal forms for derivations and, in the propositional case, a cut elimination procedure that is drastically simpler than the ones for sequent systems

    A System of Interaction and Structure

    Full text link
    This paper introduces a logical system, called BV, which extends multiplicative linear logic by a non-commutative self-dual logical operator. This extension is particularly challenging for the sequent calculus, and so far it is not achieved therein. It becomes very natural in a new formalism, called the calculus of structures, which is the main contribution of this work. Structures are formulae submitted to certain equational laws typical of sequents. The calculus of structures is obtained by generalising the sequent calculus in such a way that a new top-down symmetry of derivations is observed, and it employs inference rules that rewrite inside structures at any depth. These properties, in addition to allow the design of BV, yield a modular proof of cut elimination.Comment: This is the authoritative version of the article, with readable pictures, in colour, also available at . (The published version contains errors introduced by the editorial processing.) Web site for Deep Inference and the Calculus of Structures at <http://alessio.guglielmi.name/res/cos

    Cirquent calculus deepened

    Full text link
    Cirquent calculus is a new proof-theoretic and semantic framework, whose main distinguishing feature is being based on circuits, as opposed to the more traditional approaches that deal with tree-like objects such as formulas or sequents. Among its advantages are greater efficiency, flexibility and expressiveness. This paper presents a detailed elaboration of a deep-inference cirquent logic, which is naturally and inherently resource conscious. It shows that classical logic, both syntactically and semantically, is just a special, conservative fragment of this more general and, in a sense, more basic logic -- the logic of resources in the form of cirquent calculus. The reader will find various arguments in favor of switching to the new framework, such as arguments showing the insufficiency of the expressive power of linear logic or other formula-based approaches to developing resource logics, exponential improvements over the traditional approaches in both representational and proof complexities offered by cirquent calculus, and more. Among the main purposes of this paper is to provide an introductory-style starting point for what, as the author wishes to hope, might have a chance to become a new line of research in proof theory -- a proof theory based on circuits instead of formulas.Comment: Significant improvements over the previous version

    Importing SMT and Connection proofs as expansion trees

    Get PDF
    Different automated theorem provers reason in various deductive systems and, thus, produce proof objects which are in general not compatible. To understand and analyze these objects, one needs to study the corresponding proof theory, and then study the language used to represent proofs, on a prover by prover basis. In this work we present an implementation that takes SMT and Connection proof objects from two different provers and imports them both as expansion trees. By representing the proofs in the same framework, all the algorithms and tools available for expansion trees (compression, visualization, sequent calculus proof construction, proof checking, etc.) can be employed uniformly. The expansion proofs can also be used as a validation tool for the proof objects produced.Comment: In Proceedings PxTP 2015, arXiv:1507.0837

    Normalisation Control in Deep Inference via Atomic Flows

    Get PDF
    We introduce `atomic flows': they are graphs obtained from derivations by tracing atom occurrences and forgetting the logical structure. We study simple manipulations of atomic flows that correspond to complex reductions on derivations. This allows us to prove, for propositional logic, a new and very general normalisation theorem, which contains cut elimination as a special case. We operate in deep inference, which is more general than other syntactic paradigms, and where normalisation is more difficult to control. We argue that atomic flows are a significant technical advance for normalisation theory, because 1) the technique they support is largely independent of syntax; 2) indeed, it is largely independent of logical inference rules; 3) they constitute a powerful geometric formalism, which is more intuitive than syntax

    On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics

    Full text link
    We consider two styles of proof calculi for a family of tense logics, presented in a formalism based on nested sequents. A nested sequent can be seen as a tree of traditional single-sided sequents. Our first style of calculi is what we call "shallow calculi", where inference rules are only applied at the root node in a nested sequent. Our shallow calculi are extensions of Kashima's calculus for tense logic and share an essential characteristic with display calculi, namely, the presence of structural rules called "display postulates". Shallow calculi enjoy a simple cut elimination procedure, but are unsuitable for proof search due to the presence of display postulates and other structural rules. The second style of calculi uses deep-inference, whereby inference rules can be applied at any node in a nested sequent. We show that, for a range of extensions of tense logic, the two styles of calculi are equivalent, and there is a natural proof theoretic correspondence between display postulates and deep inference. The deep inference calculi enjoy the subformula property and have no display postulates or other structural rules, making them a better framework for proof search

    A System of Interaction and Structure II: The Need for Deep Inference

    Full text link
    This paper studies properties of the logic BV, which is an extension of multiplicative linear logic (MLL) with a self-dual non-commutative operator. BV is presented in the calculus of structures, a proof theoretic formalism that supports deep inference, in which inference rules can be applied anywhere inside logical expressions. The use of deep inference results in a simple logical system for MLL extended with the self-dual non-commutative operator, which has been to date not known to be expressible in sequent calculus. In this paper, deep inference is shown to be crucial for the logic BV, that is, any restriction on the ``depth'' of the inference rules of BV would result in a strictly less expressive logical system
    corecore