2,003 research outputs found

    Triplet-based Deep Similarity Learning for Person Re-Identification

    Full text link
    In recent years, person re-identification (re-id) catches great attention in both computer vision community and industry. In this paper, we propose a new framework for person re-identification with a triplet-based deep similarity learning using convolutional neural networks (CNNs). The network is trained with triplet input: two of them have the same class labels and the other one is different. It aims to learn the deep feature representation, with which the distance within the same class is decreased, while the distance between the different classes is increased as much as possible. Moreover, we trained the model jointly on six different datasets, which differs from common practice - one model is just trained on one dataset and tested also on the same one. However, the enormous number of possible triplet data among the large number of training samples makes the training impossible. To address this challenge, a double-sampling scheme is proposed to generate triplets of images as effective as possible. The proposed framework is evaluated on several benchmark datasets. The experimental results show that, our method is effective for the task of person re-identification and it is comparable or even outperforms the state-of-the-art methods.Comment: ICCV Workshops 201

    Deep Attributes Driven Multi-Camera Person Re-identification

    Full text link
    The visual appearance of a person is easily affected by many factors like pose variations, viewpoint changes and camera parameter differences. This makes person Re-Identification (ReID) among multiple cameras a very challenging task. This work is motivated to learn mid-level human attributes which are robust to such visual appearance variations. And we propose a semi-supervised attribute learning framework which progressively boosts the accuracy of attributes only using a limited number of labeled data. Specifically, this framework involves a three-stage training. A deep Convolutional Neural Network (dCNN) is first trained on an independent dataset labeled with attributes. Then it is fine-tuned on another dataset only labeled with person IDs using our defined triplet loss. Finally, the updated dCNN predicts attribute labels for the target dataset, which is combined with the independent dataset for the final round of fine-tuning. The predicted attributes, namely \emph{deep attributes} exhibit superior generalization ability across different datasets. By directly using the deep attributes with simple Cosine distance, we have obtained surprisingly good accuracy on four person ReID datasets. Experiments also show that a simple metric learning modular further boosts our method, making it significantly outperform many recent works.Comment: Person Re-identification; 17 pages; 5 figures; In IEEE ECCV 201

    Deep-Facial Feature-Based Person Reidentification for Authentication in Surveillance Applications

    Get PDF
    Person reidentification (Re-ID) has been a problem recently faced in computer vision. Most of the existing methods focus on body features which are captured in the scene with high-end surveillance system. However, it is unhelpful for authentication. The technology came up empty in surveillance scenario such as in London’s subway bomb blast, and Bangalore ATM brutal attack cases, even though the suspected images exist in official databases. Hence, the prime objective of this chapter is to develop an efficient facial feature-based person reidentification framework for controlled scenario to authenticate a person. Initially, faces are detected by faster region-based convolutional neural network (Faster R-CNN). Subsequently, landmark points are obtained using supervised descent method (SDM) algorithm, and the face is recognized, by the joint Bayesian model. Each image is given an ID in the training database. Based on their similarity with the query image, it is ranked with the Re-ID index. The proposed framework overcomes the challenges such as pose variations, low resolution, and partial occlusions (mask and goggles). The experimental results (accuracy) on benchmark dataset demonstrate the effectiveness of the proposed method which is inferred from the observation of receiver operating characteristic (ROC) curve and cumulative matching characteristics (CMC) curve
    • …
    corecore