725 research outputs found

    Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification

    Full text link
    Convolutional Neural Networks (CNN) are state-of-the-art models for many image classification tasks. However, to recognize cancer subtypes automatically, training a CNN on gigapixel resolution Whole Slide Tissue Images (WSI) is currently computationally impossible. The differentiation of cancer subtypes is based on cellular-level visual features observed on image patch scale. Therefore, we argue that in this situation, training a patch-level classifier on image patches will perform better than or similar to an image-level classifier. The challenge becomes how to intelligently combine patch-level classification results and model the fact that not all patches will be discriminative. We propose to train a decision fusion model to aggregate patch-level predictions given by patch-level CNNs, which to the best of our knowledge has not been shown before. Furthermore, we formulate a novel Expectation-Maximization (EM) based method that automatically locates discriminative patches robustly by utilizing the spatial relationships of patches. We apply our method to the classification of glioma and non-small-cell lung carcinoma cases into subtypes. The classification accuracy of our method is similar to the inter-observer agreement between pathologists. Although it is impossible to train CNNs on WSIs, we experimentally demonstrate using a comparable non-cancer dataset of smaller images that a patch-based CNN can outperform an image-based CNN

    Rail Robot for Rail Track Inspection

    Get PDF
    Railway transportation requires constant inspections and immediate maintenance to ensure public safety. Traditional manual inspections are not only time consuming, but also expensive. In addition, the accuracy of defect detection is also subjected to human expertise and efficiency at the time of inspection. Computing and Robotics offer automated IoT based solutions where robots could be deployed on rail-tracks and hard to reach areas, and controlled from control rooms to provide faster and low-cost inspection. In this thesis, a novel automated system based on robotics and visual inspection is proposed. The system provides local image processing while inspecting and cloud storage of information that consist of images of the defected railway tracks only. The proposed system utilizes state of the art Machine Learning system and applies it on the images obtained from the tracks in order to classify them as normal or suspicious. Such locations are then marked and more careful inspection can be performed by a dedicated operator with very few locations to inspect (as opposed to the full track)

    A Survey on Audio-Video based Defect Detection through Deep Learning in Railway Maintenance

    Get PDF
    Within Artificial Intelligence, Deep Learning (DL) represents a paradigm that has been showing unprecedented performance in image and audio processing by supporting or even replacing humans in defect and anomaly detection. The Railway sector is expected to benefit from DL applications, especially in predictive maintenance applications, where smart audio and video sensors can be leveraged yet kept distinct from safety-critical functions. Such separation is crucial, as it allows for improving system dependability with no impact on its safety certification. This is further supported by the development of DL in other transportation domains, such as automotive and avionics, opening for knowledge transfer opportunities and highlighting the potential of such a paradigm in railways. In order to summarize the recent state-of-the-art while inquiring about future opportunities, this paper reviews DL approaches for the analysis of data generated by acoustic and visual sensors in railway maintenance applications that have been published until August 31st, 2021. In this paper, the current state of the research is investigated and evaluated using a structured and systematic method, in order to highlight promising approaches and successful applications, as well as to identify available datasets, current limitations, open issues, challenges, and recommendations about future research directions

    A Deep Learning-Based Hybrid Approach to Detect Fastener Defects in Real-Time

    Get PDF
    A fastener is an important component used to fix the rail in railways. Defects in this component cause the rail and ballast to remain unstable. If the defective fasteners are not replaced in time, it is inevitable that the train will derail, and serious accidents will occur. Therefore, this component should be inspected periodically. Conventional image processing-based control systems are affected by noise and different lighting conditions in the real environment. In this study, it is aimed to determine the defects of fasteners with a deep learning-based hybrid approach. The YOLOv4-Tiny method is used for fastener detection and localization. This method gives accurate results, especially for the detection of small objects. After the fastener position is determined, a new lightweight convolutional neural network model is used for defect classification. The proposed convolutional neural network for classification has a small network structure because it uses depth-wise and pointwise convolution layers. When the experimental results are compared with other known transfer learning methods, better results were obtained in terms of training/test time and accuracy
    corecore