17,007 research outputs found

    A comparative analysis of automatic deep neural networks for image retrieval

    Get PDF
    Feature descriptor and similarity measures are the two core components in content-based image retrieval and crucial issues due to “semantic gap” between human conceptual meaning and a machine low-level feature. Recently, deep learning techniques have shown a great interest in image recognition especially in extracting features information about the images. In this paper, we investigated, compared, and evaluated different deep convolutional neural networks and their applications for image classification and automatic image retrieval. The approaches are: simple convolutional neural network, AlexNet, GoogleNet, ResNet-50, Vgg-16, and Vgg-19. We compared the performance of the different approaches to prior works in this domain by using known accuracy metrics and analyzed the differences between the approaches. The performances of these approaches are investigated using public image datasets corel 1K, corel 10K, and Caltech 256. Hence, we deduced that GoogleNet approach yields the best overall results. In addition, we investigated and compared different similarity measures. Based on exhausted mentioned investigations, we developed a novel algorithm for image retrieval

    Batik image retrieval using convolutional neural network

    Get PDF
    This paper presents a simple technique for performing Batik image retrieval using the Convolutional Neural Network (CNN) approach. Two CNN models, i.e. supervised and unsupervised learning approach, are considered to perform end-to-end feature extraction in order to describe the content of Batik image. The distance metrics measure the similarity between the query and target images in database based on the feature generated from CNN architecture. As reported in the experimental section, the proposed supervised CNN model achieves better performance compared to unsupervised CNN in the Batik image retrieval system. In addition, image feature composed from the proposed CNN model yields better performance compared to that of the handcrafted feature descriptor. Yet, it demonstrates the superiority performance of deep learning-based approach in the Batik image retrieval system

    A Fast Content-Based Image Retrieval Method Using Deep Visual Features

    Full text link
    Fast and scalable Content-Based Image Retrieval using visual features is required for document analysis, Medical image analysis, etc. in the present age. Convolutional Neural Network (CNN) activations as features achieved their outstanding performance in this area. Deep Convolutional representations using the softmax function in the output layer are also ones among visual features. However, almost all the image retrieval systems hold their index of visual features on main memory in order to high responsiveness, limiting their applicability for big data applications. In this paper, we propose a fast calculation method of cosine similarity with L2 norm indexed in advance on Elasticsearch. We evaluate our approach with ImageNet Dataset and VGG-16 pre-trained model. The evaluation results show the effectiveness and efficiency of our proposed method.Comment: accepted in ICDAR-WML: The 2nd International Workshop on Machine Learning 201

    Content-Based Image Retrieval using Deep Learning

    Get PDF
    A content-based image retrieval (CBIR) system works on the low-level visual features of a user input query image, which makes it difficult for the users to formulate the query and also does not give satisfactory retrieval results. In the past image annotation was proposed as the best possible system for CBIR which works on the principle of automatically assigning keywords to images that help image retrieval users to query images based on these keywords. Image annotation is often regarded as the problem of image classification where the images are represented by some low-level features and the mapping between low-level features and high-level concepts (class labels) is done by some supervised learning algorithms. In a CBIR system learning of effective feature representations and similarity measures is very important for the retrieval performance. Semantic gap has been the key challenge in the past for this problem. A semantic gap exists between low-level image pixels captured by machines and the high-level semantics perceived by humans. Machine learning has been exploited to bridge this gap in the long term. The recent successes of deep learning techniques especially Convolutional Neural Networks (CNN) in solving computer vision applications has inspired me to work on this thesis so as to solve the problem of CBIR using a dataset of annotated images

    Deep Cross-Modal Correlation Learning for Audio and Lyrics in Music Retrieval

    Get PDF
    Deep cross-modal learning has successfully demonstrated excellent performance in cross-modal multimedia retrieval, with the aim of learning joint representations between different data modalities. Unfortunately, little research focuses on cross-modal correlation learning where temporal structures of different data modalities such as audio and lyrics should be taken into account. Stemming from the characteristic of temporal structures of music in nature, we are motivated to learn the deep sequential correlation between audio and lyrics. In this work, we propose a deep cross-modal correlation learning architecture involving two-branch deep neural networks for audio modality and text modality (lyrics). Data in different modalities are converted to the same canonical space where inter modal canonical correlation analysis is utilized as an objective function to calculate the similarity of temporal structures. This is the first study that uses deep architectures for learning the temporal correlation between audio and lyrics. A pre-trained Doc2Vec model followed by fully-connected layers is used to represent lyrics. Two significant contributions are made in the audio branch, as follows: i) We propose an end-to-end network to learn cross-modal correlation between audio and lyrics, where feature extraction and correlation learning are simultaneously performed and joint representation is learned by considering temporal structures. ii) As for feature extraction, we further represent an audio signal by a short sequence of local summaries (VGG16 features) and apply a recurrent neural network to compute a compact feature that better learns temporal structures of music audio. Experimental results, using audio to retrieve lyrics or using lyrics to retrieve audio, verify the effectiveness of the proposed deep correlation learning architectures in cross-modal music retrieval
    • …
    corecore