121,855 research outputs found

    Deep White-Balance Editing

    Full text link
    We introduce a deep learning approach to realistically edit an sRGB image's white balance. Cameras capture sensor images that are rendered by their integrated signal processor (ISP) to a standard RGB (sRGB) color space encoding. The ISP rendering begins with a white-balance procedure that is used to remove the color cast of the scene's illumination. The ISP then applies a series of nonlinear color manipulations to enhance the visual quality of the final sRGB image. Recent work by [3] showed that sRGB images that were rendered with the incorrect white balance cannot be easily corrected due to the ISP's nonlinear rendering. The work in [3] proposed a k-nearest neighbor (KNN) solution based on tens of thousands of image pairs. We propose to solve this problem with a deep neural network (DNN) architecture trained in an end-to-end manner to learn the correct white balance. Our DNN maps an input image to two additional white-balance settings corresponding to indoor and outdoor illuminations. Our solution not only is more accurate than the KNN approach in terms of correcting a wrong white-balance setting but also provides the user the freedom to edit the white balance in the sRGB image to other illumination settings.Comment: Accepted as Oral at CVPR 202

    Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images

    Full text link
    The quality of modern astronomical data, the power of modern computers and the agility of current image-processing software enable the creation of high-quality images in a purely digital form. The combination of these technological advancements has created a new ability to make color astronomical images. And in many ways it has led to a new philosophy towards how to create them. A practical guide is presented on how to generate astronomical images from research data with powerful image-processing programs. These programs use a layering metaphor that allows for an unlimited number of astronomical datasets to be combined in any desired color scheme, creating an immense parameter space to be explored using an iterative approach. Several examples of image creation are presented. A philosophy is also presented on how to use color and composition to create images that simultaneously highlight scientific detail and are aesthetically appealing. This philosophy is necessary because most datasets do not correspond to the wavelength range of sensitivity of the human eye. The use of visual grammar, defined as the elements which affect the interpretation of an image, can maximize the richness and detail in an image while maintaining scientific accuracy. By properly using visual grammar, one can imply qualities that a two-dimensional image intrinsically cannot show, such as depth, motion and energy. In addition, composition can be used to engage viewers and keep them interested for a longer period of time. The use of these techniques can result in a striking image that will effectively convey the science within the image, to scientists and to the public.Comment: 104 pages, 38 figures, submitted to A
    corecore