569 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Graph signal processing for machine learning: A review and new perspectives

    Get PDF
    The effective representation, processing, analysis, and visualization of large-scale structured data, especially those related to complex domains such as networks and graphs, are one of the key questions in modern machine learning. Graph signal processing (GSP), a vibrant branch of signal processing models and algorithms that aims at handling data supported on graphs, opens new paths of research to address this challenge. In this article, we review a few important contributions made by GSP concepts and tools, such as graph filters and transforms, to the development of novel machine learning algorithms. In particular, our discussion focuses on the following three aspects: exploiting data structure and relational priors, improving data and computational efficiency, and enhancing model interpretability. Furthermore, we provide new perspectives on future development of GSP techniques that may serve as a bridge between applied mathematics and signal processing on one side, and machine learning and network science on the other. Cross-fertilization across these different disciplines may help unlock the numerous challenges of complex data analysis in the modern age

    PointMCD: Boosting Deep Point Cloud Encoders via Multi-view Cross-modal Distillation for 3D Shape Recognition

    Full text link
    As two fundamental representation modalities of 3D objects, 3D point clouds and multi-view 2D images record shape information from different domains of geometric structures and visual appearances. In the current deep learning era, remarkable progress in processing such two data modalities has been achieved through respectively customizing compatible 3D and 2D network architectures. However, unlike multi-view image-based 2D visual modeling paradigms, which have shown leading performance in several common 3D shape recognition benchmarks, point cloud-based 3D geometric modeling paradigms are still highly limited by insufficient learning capacity, due to the difficulty of extracting discriminative features from irregular geometric signals. In this paper, we explore the possibility of boosting deep 3D point cloud encoders by transferring visual knowledge extracted from deep 2D image encoders under a standard teacher-student distillation workflow. Generally, we propose PointMCD, a unified multi-view cross-modal distillation architecture, including a pretrained deep image encoder as the teacher and a deep point encoder as the student. To perform heterogeneous feature alignment between 2D visual and 3D geometric domains, we further investigate visibility-aware feature projection (VAFP), by which point-wise embeddings are reasonably aggregated into view-specific geometric descriptors. By pair-wisely aligning multi-view visual and geometric descriptors, we can obtain more powerful deep point encoders without exhausting and complicated network modification. Experiments on 3D shape classification, part segmentation, and unsupervised learning strongly validate the effectiveness of our method. The code and data will be publicly available at https://github.com/keeganhk/PointMCD

    A survey on deep geometry learning: from a representation perspective

    Get PDF
    Researchers have achieved great success in dealing with 2D images using deep learning. In recent years, 3D computer vision and geometry deep learning have gained ever more attention. Many advanced techniques for 3D shapes have been proposed for different applications. Unlike 2D images, which can be uniformly represented by a regular grid of pixels, 3D shapes have various representations, such as depth images, multi-view images, voxels, point clouds, meshes, implicit surfaces, etc. The performance achieved in different applications largely depends on the representation used, and there is no unique representation that works well for all applications. Therefore, in this survey, we review recent developments in deep learning for 3D geometry from a representation perspective, summarizing the advantages and disadvantages of different representations for different applications. We also present existing datasets in these representations and further discuss future research directions

    A review on deep learning techniques for 3D sensed data classification

    Get PDF
    Over the past decade deep learning has driven progress in 2D image understanding. Despite these advancements, techniques for automatic 3D sensed data understanding, such as point clouds, is comparatively immature. However, with a range of important applications from indoor robotics navigation to national scale remote sensing there is a high demand for algorithms that can learn to automatically understand and classify 3D sensed data. In this paper we review the current state-of-the-art deep learning architectures for processing unstructured Euclidean data. We begin by addressing the background concepts and traditional methodologies. We review the current main approaches including; RGB-D, multi-view, volumetric and fully end-to-end architecture designs. Datasets for each category are documented and explained. Finally, we give a detailed discussion about the future of deep learning for 3D sensed data, using literature to justify the areas where future research would be most valuable.Comment: 25 pages, 9 figures. Review pape

    Le nuage de point intelligent

    Full text link
    Discrete spatial datasets known as point clouds often lay the groundwork for decision-making applications. E.g., we can use such data as a reference for autonomous cars and robot’s navigation, as a layer for floor-plan’s creation and building’s construction, as a digital asset for environment modelling and incident prediction... Applications are numerous, and potentially increasing if we consider point clouds as digital reality assets. Yet, this expansion faces technical limitations mainly from the lack of semantic information within point ensembles. Connecting knowledge sources is still a very manual and time-consuming process suffering from error-prone human interpretation. This highlights a strong need for domain-related data analysis to create a coherent and structured information. The thesis clearly tries to solve automation problematics in point cloud processing to create intelligent environments, i.e. virtual copies that can be used/integrated in fully autonomous reasoning services. We tackle point cloud questions associated with knowledge extraction – particularly segmentation and classification – structuration, visualisation and interaction with cognitive decision systems. We propose to connect both point cloud properties and formalized knowledge to rapidly extract pertinent information using domain-centered graphs. The dissertation delivers the concept of a Smart Point Cloud (SPC) Infrastructure which serves as an interoperable and modular architecture for a unified processing. It permits an easy integration to existing workflows and a multi-domain specialization through device knowledge, analytic knowledge or domain knowledge. Concepts, algorithms, code and materials are given to replicate findings and extend current applications.Les ensembles discrets de données spatiales, appelés nuages de points, forment souvent le support principal pour des scénarios d’aide à la décision. Par exemple, nous pouvons utiliser ces données comme référence pour les voitures autonomes et la navigation des robots, comme couche pour la création de plans et la construction de bâtiments, comme actif numérique pour la modélisation de l'environnement et la prédiction d’incidents... Les applications sont nombreuses et potentiellement croissantes si l'on considère les nuages de points comme des actifs de réalité numérique. Cependant, cette expansion se heurte à des limites techniques dues principalement au manque d'information sémantique au sein des ensembles de points. La création de liens avec des sources de connaissances est encore un processus très manuel, chronophage et lié à une interprétation humaine sujette à l'erreur. Cela met en évidence la nécessité d'une analyse automatisée des données relatives au domaine étudié afin de créer une information cohérente et structurée. La thèse tente clairement de résoudre les problèmes d'automatisation dans le traitement des nuages de points pour créer des environnements intelligents, c'est-àdire des copies virtuelles qui peuvent être utilisées/intégrées dans des services de raisonnement totalement autonomes. Nous abordons plusieurs problématiques liées aux nuages de points et associées à l'extraction des connaissances - en particulier la segmentation et la classification - la structuration, la visualisation et l'interaction avec les systèmes cognitifs de décision. Nous proposons de relier à la fois les propriétés des nuages de points et les connaissances formalisées pour extraire rapidement les informations pertinentes à l'aide de graphes centrés sur le domaine. La dissertation propose le concept d'une infrastructure SPC (Smart Point Cloud) qui sert d'architecture interopérable et modulaire pour un traitement unifié. Elle permet une intégration facile aux flux de travail existants et une spécialisation multidomaine grâce aux connaissances liée aux capteurs, aux connaissances analytiques ou aux connaissances de domaine. Plusieurs concepts, algorithmes, codes et supports sont fournis pour reproduire les résultats et étendre les applications actuelles.Diskrete räumliche Datensätze, so genannte Punktwolken, bilden oft die Grundlage für Entscheidungsanwendungen. Beispielsweise können wir solche Daten als Referenz für autonome Autos und Roboternavigation, als Ebene für die Erstellung von Grundrissen und Gebäudekonstruktionen, als digitales Gut für die Umgebungsmodellierung und Ereignisprognose verwenden... Die Anwendungen sind zahlreich und nehmen potenziell zu, wenn wir Punktwolken als Digital Reality Assets betrachten. Allerdings stößt diese Erweiterung vor allem durch den Mangel an semantischen Informationen innerhalb von Punkt-Ensembles auf technische Grenzen. Die Verbindung von Wissensquellen ist immer noch ein sehr manueller und zeitaufwendiger Prozess, der unter fehleranfälliger menschlicher Interpretation leidet. Dies verdeutlicht den starken Bedarf an domänenbezogenen Datenanalysen, um eine kohärente und strukturierte Information zu schaffen. Die Arbeit versucht eindeutig, Automatisierungsprobleme in der Punktwolkenverarbeitung zu lösen, um intelligente Umgebungen zu schaffen, d.h. virtuelle Kopien, die in vollständig autonome Argumentationsdienste verwendet/integriert werden können. Wir befassen uns mit Punktwolkenfragen im Zusammenhang mit der Wissensextraktion - insbesondere Segmentierung und Klassifizierung - Strukturierung, Visualisierung und Interaktion mit kognitiven Entscheidungssystemen. Wir schlagen vor, sowohl Punktwolkeneigenschaften als auch formalisiertes Wissen zu verbinden, um schnell relevante Informationen mithilfe von domänenzentrierten Grafiken zu extrahieren. Die Dissertation liefert das Konzept einer Smart Point Cloud (SPC) Infrastruktur, die als interoperable und modulare Architektur für eine einheitliche Verarbeitung dient. Es ermöglicht eine einfache Integration in bestehende Workflows und eine multidimensionale Spezialisierung durch Gerätewissen, analytisches Wissen oder Domänenwissen. Konzepte, Algorithmen, Code und Materialien werden zur Verfügung gestellt, um Erkenntnisse zu replizieren und aktuelle Anwendungen zu erweitern
    • …
    corecore