8,817 research outputs found

    Effective Transfer of Pretrained Large Visual Model for Fabric Defect Segmentation via Specifc Knowledge Injection

    Full text link
    Fabric defect segmentation is integral to textile quality control. Despite this, the scarcity of high-quality annotated data and the diversity of fabric defects present significant challenges to the application of deep learning in this field. These factors limit the generalization and segmentation performance of existing models, impeding their ability to handle the complexity of diverse fabric types and defects. To overcome these obstacles, this study introduces an innovative method to infuse specialized knowledge of fabric defects into the Segment Anything Model (SAM), a large-scale visual model. By introducing and training a unique set of fabric defect-related parameters, this approach seamlessly integrates domain-specific knowledge into SAM without the need for extensive modifications to the pre-existing model parameters. The revamped SAM model leverages generalized image understanding learned from large-scale natural image datasets while incorporating fabric defect-specific knowledge, ensuring its proficiency in fabric defect segmentation tasks. The experimental results reveal a significant improvement in the model's segmentation performance, attributable to this novel amalgamation of generic and fabric-specific knowledge. When benchmarking against popular existing segmentation models across three datasets, our proposed model demonstrates a substantial leap in performance. Its impressive results in cross-dataset comparisons and few-shot learning experiments further demonstrate its potential for practical applications in textile quality control.Comment: 13 pages,4 figures, 3 table

    Adversarial Learning in Real-World Fraud Detection: Challenges and Perspectives

    Full text link
    Data economy relies on data-driven systems and complex machine learning applications are fueled by them. Unfortunately, however, machine learning models are exposed to fraudulent activities and adversarial attacks, which threaten their security and trustworthiness. In the last decade or so, the research interest on adversarial machine learning has grown significantly, revealing how learning applications could be severely impacted by effective attacks. Although early results of adversarial machine learning indicate the huge potential of the approach to specific domains such as image processing, still there is a gap in both the research literature and practice regarding how to generalize adversarial techniques in other domains and applications. Fraud detection is a critical defense mechanism for data economy, as it is for other applications as well, which poses several challenges for machine learning. In this work, we describe how attacks against fraud detection systems differ from other applications of adversarial machine learning, and propose a number of interesting directions to bridge this gap

    Modular lifelong machine learning

    Get PDF
    Deep learning has drastically improved the state-of-the-art in many important fields, including computer vision and natural language processing (LeCun et al., 2015). However, it is expensive to train a deep neural network on a machine learning problem. The overall training cost further increases when one wants to solve additional problems. Lifelong machine learning (LML) develops algorithms that aim to efficiently learn to solve a sequence of problems, which become available one at a time. New problems are solved with less resources by transferring previously learned knowledge. At the same time, an LML algorithm needs to retain good performance on all encountered problems, thus avoiding catastrophic forgetting. Current approaches do not possess all the desired properties of an LML algorithm. First, they primarily focus on preventing catastrophic forgetting (Diaz-Rodriguez et al., 2018; Delange et al., 2021). As a result, they neglect some knowledge transfer properties. Furthermore, they assume that all problems in a sequence share the same input space. Finally, scaling these methods to a large sequence of problems remains a challenge. Modular approaches to deep learning decompose a deep neural network into sub-networks, referred to as modules. Each module can then be trained to perform an atomic transformation, specialised in processing a distinct subset of inputs. This modular approach to storing knowledge makes it easy to only reuse the subset of modules which are useful for the task at hand. This thesis introduces a line of research which demonstrates the merits of a modular approach to lifelong machine learning, and its ability to address the aforementioned shortcomings of other methods. Compared to previous work, we show that a modular approach can be used to achieve more LML properties than previously demonstrated. Furthermore, we develop tools which allow modular LML algorithms to scale in order to retain said properties on longer sequences of problems. First, we introduce HOUDINI, a neurosymbolic framework for modular LML. HOUDINI represents modular deep neural networks as functional programs and accumulates a library of pre-trained modules over a sequence of problems. Given a new problem, we use program synthesis to select a suitable neural architecture, as well as a high-performing combination of pre-trained and new modules. We show that our approach has most of the properties desired from an LML algorithm. Notably, it can perform forward transfer, avoid negative transfer and prevent catastrophic forgetting, even across problems with disparate input domains and problems which require different neural architectures. Second, we produce a modular LML algorithm which retains the properties of HOUDINI but can also scale to longer sequences of problems. To this end, we fix the choice of a neural architecture and introduce a probabilistic search framework, PICLE, for searching through different module combinations. To apply PICLE, we introduce two probabilistic models over neural modules which allows us to efficiently identify promising module combinations. Third, we phrase the search over module combinations in modular LML as black-box optimisation, which allows one to make use of methods from the setting of hyperparameter optimisation (HPO). We then develop a new HPO method which marries a multi-fidelity approach with model-based optimisation. We demonstrate that this leads to improvement in anytime performance in the HPO setting and discuss how this can in turn be used to augment modular LML methods. Overall, this thesis identifies a number of important LML properties, which have not all been attained in past methods, and presents an LML algorithm which can achieve all of them, apart from backward transfer

    The State of the Art in Deep Learning Applications, Challenges, and Future Prospects::A Comprehensive Review of Flood Forecasting and Management

    Get PDF
    Floods are a devastating natural calamity that may seriously harm both infrastructure and people. Accurate flood forecasts and control are essential to lessen these effects and safeguard populations. By utilizing its capacity to handle massive amounts of data and provide accurate forecasts, deep learning has emerged as a potent tool for improving flood prediction and control. The current state of deep learning applications in flood forecasting and management is thoroughly reviewed in this work. The review discusses a variety of subjects, such as the data sources utilized, the deep learning models used, and the assessment measures adopted to judge their efficacy. It assesses current approaches critically and points out their advantages and disadvantages. The article also examines challenges with data accessibility, the interpretability of deep learning models, and ethical considerations in flood prediction. The report also describes potential directions for deep-learning research to enhance flood predictions and control. Incorporating uncertainty estimates into forecasts, integrating many data sources, developing hybrid models that mix deep learning with other methodologies, and enhancing the interpretability of deep learning models are a few of these. These research goals can help deep learning models become more precise and effective, which will result in better flood control plans and forecasts. Overall, this review is a useful resource for academics and professionals working on the topic of flood forecasting and management. By reviewing the current state of the art, emphasizing difficulties, and outlining potential areas for future study, it lays a solid basis. Communities may better prepare for and lessen the destructive effects of floods by implementing cutting-edge deep learning algorithms, thereby protecting people and infrastructure

    FedForgery: Generalized Face Forgery Detection with Residual Federated Learning

    Full text link
    With the continuous development of deep learning in the field of image generation models, a large number of vivid forged faces have been generated and spread on the Internet. These high-authenticity artifacts could grow into a threat to society security. Existing face forgery detection methods directly utilize the obtained public shared or centralized data for training but ignore the personal privacy and security issues when personal data couldn't be centralizedly shared in real-world scenarios. Additionally, different distributions caused by diverse artifact types would further bring adverse influences on the forgery detection task. To solve the mentioned problems, the paper proposes a novel generalized residual Federated learning for face Forgery detection (FedForgery). The designed variational autoencoder aims to learn robust discriminative residual feature maps to detect forgery faces (with diverse or even unknown artifact types). Furthermore, the general federated learning strategy is introduced to construct distributed detection model trained collaboratively with multiple local decentralized devices, which could further boost the representation generalization. Experiments conducted on publicly available face forgery detection datasets prove the superior performance of the proposed FedForgery. The designed novel generalized face forgery detection protocols and source code would be publicly available.Comment: The code is available at https://github.com/GANG370/FedForgery. The paper has been accepted in the IEEE Transactions on Information Forensics & Securit

    Machine Learning Approaches for the Prioritisation of Cardiovascular Disease Genes Following Genome- wide Association Study

    Get PDF
    Genome-wide association studies (GWAS) have revealed thousands of genetic loci, establishing itself as a valuable method for unravelling the complex biology of many diseases. As GWAS has grown in size and improved in study design to detect effects, identifying real causal signals, disentangling from other highly correlated markers associated by linkage disequilibrium (LD) remains challenging. This has severely limited GWAS findings and brought the method’s value into question. Although thousands of disease susceptibility loci have been reported, causal variants and genes at these loci remain elusive. Post-GWAS analysis aims to dissect the heterogeneity of variant and gene signals. In recent years, machine learning (ML) models have been developed for post-GWAS prioritisation. ML models have ranged from using logistic regression to more complex ensemble models such as random forests and gradient boosting, as well as deep learning models (i.e., neural networks). When combined with functional validation, these methods have shown important translational insights, providing a strong evidence-based approach to direct post-GWAS research. However, ML approaches are in their infancy across biological applications, and as they continue to evolve an evaluation of their robustness for GWAS prioritisation is needed. Here, I investigate the landscape of ML across: selected models, input features, bias risk, and output model performance, with a focus on building a prioritisation framework that is applied to blood pressure GWAS results and tested on re-application to blood lipid traits

    Local 3D Editing via 3D Distillation of CLIP Knowledge

    Full text link
    3D content manipulation is an important computer vision task with many real-world applications (e.g., product design, cartoon generation, and 3D Avatar editing). Recently proposed 3D GANs can generate diverse photorealistic 3D-aware contents using Neural Radiance fields (NeRF). However, manipulation of NeRF still remains a challenging problem since the visual quality tends to degrade after manipulation and suboptimal control handles such as 2D semantic maps are used for manipulations. While text-guided manipulations have shown potential in 3D editing, such approaches often lack locality. To overcome these problems, we propose Local Editing NeRF (LENeRF), which only requires text inputs for fine-grained and localized manipulation. Specifically, we present three add-on modules of LENeRF, the Latent Residual Mapper, the Attention Field Network, and the Deformation Network, which are jointly used for local manipulations of 3D features by estimating a 3D attention field. The 3D attention field is learned in an unsupervised way, by distilling the zero-shot mask generation capability of CLIP to the 3D space with multi-view guidance. We conduct diverse experiments and thorough evaluations both quantitatively and qualitatively.Comment: conference: CVPR 202

    Reinforcement learning in large state action spaces

    Get PDF
    Reinforcement learning (RL) is a promising framework for training intelligent agents which learn to optimize long term utility by directly interacting with the environment. Creating RL methods which scale to large state-action spaces is a critical problem towards ensuring real world deployment of RL systems. However, several challenges limit the applicability of RL to large scale settings. These include difficulties with exploration, low sample efficiency, computational intractability, task constraints like decentralization and lack of guarantees about important properties like performance, generalization and robustness in potentially unseen scenarios. This thesis is motivated towards bridging the aforementioned gap. We propose several principled algorithms and frameworks for studying and addressing the above challenges RL. The proposed methods cover a wide range of RL settings (single and multi-agent systems (MAS) with all the variations in the latter, prediction and control, model-based and model-free methods, value-based and policy-based methods). In this work we propose the first results on several different problems: e.g. tensorization of the Bellman equation which allows exponential sample efficiency gains (Chapter 4), provable suboptimality arising from structural constraints in MAS(Chapter 3), combinatorial generalization results in cooperative MAS(Chapter 5), generalization results on observation shifts(Chapter 7), learning deterministic policies in a probabilistic RL framework(Chapter 6). Our algorithms exhibit provably enhanced performance and sample efficiency along with better scalability. Additionally, we also shed light on generalization aspects of the agents under different frameworks. These properties have been been driven by the use of several advanced tools (e.g. statistical machine learning, state abstraction, variational inference, tensor theory). In summary, the contributions in this thesis significantly advance progress towards making RL agents ready for large scale, real world applications

    Using machine learning to predict pathogenicity of genomic variants throughout the human genome

    Get PDF
    Geschätzt mehr als 6.000 Erkrankungen werden durch Veränderungen im Genom verursacht. Ursachen gibt es viele: Eine genomische Variante kann die Translation eines Proteins stoppen, die Genregulation stören oder das Spleißen der mRNA in eine andere Isoform begünstigen. All diese Prozesse müssen überprüft werden, um die zum beschriebenen Phänotyp passende Variante zu ermitteln. Eine Automatisierung dieses Prozesses sind Varianteneffektmodelle. Mittels maschinellem Lernen und Annotationen aus verschiedenen Quellen bewerten diese Modelle genomische Varianten hinsichtlich ihrer Pathogenität. Die Entwicklung eines Varianteneffektmodells erfordert eine Reihe von Schritten: Annotation der Trainingsdaten, Auswahl von Features, Training verschiedener Modelle und Selektion eines Modells. Hier präsentiere ich ein allgemeines Workflow dieses Prozesses. Dieses ermöglicht es den Prozess zu konfigurieren, Modellmerkmale zu bearbeiten, und verschiedene Annotationen zu testen. Der Workflow umfasst außerdem die Optimierung von Hyperparametern, Validierung und letztlich die Anwendung des Modells durch genomweites Berechnen von Varianten-Scores. Der Workflow wird in der Entwicklung von Combined Annotation Dependent Depletion (CADD), einem Varianteneffektmodell zur genomweiten Bewertung von SNVs und InDels, verwendet. Durch Etablierung des ersten Varianteneffektmodells für das humane Referenzgenome GRCh38 demonstriere ich die gewonnenen Möglichkeiten Annotationen aufzugreifen und neue Modelle zu trainieren. Außerdem zeige ich, wie Deep-Learning-Scores als Feature in einem CADD-Modell die Vorhersage von RNA-Spleißing verbessern. Außerdem werden Varianteneffektmodelle aufgrund eines neuen, auf Allelhäufigkeit basierten, Trainingsdatensatz entwickelt. Diese Ergebnisse zeigen, dass der entwickelte Workflow eine skalierbare und flexible Möglichkeit ist, um Varianteneffektmodelle zu entwickeln. Alle entstandenen Scores sind unter cadd.gs.washington.edu und cadd.bihealth.org frei verfügbar.More than 6,000 diseases are estimated to be caused by genomic variants. This can happen in many possible ways: a variant may stop the translation of a protein, interfere with gene regulation, or alter splicing of the transcribed mRNA into an unwanted isoform. It is necessary to investigate all of these processes in order to evaluate which variant may be causal for the deleterious phenotype. A great help in this regard are variant effect scores. Implemented as machine learning classifiers, they integrate annotations from different resources to rank genomic variants in terms of pathogenicity. Developing a variant effect score requires multiple steps: annotation of the training data, feature selection, model training, benchmarking, and finally deployment for the model's application. Here, I present a generalized workflow of this process. It makes it simple to configure how information is converted into model features, enabling the rapid exploration of different annotations. The workflow further implements hyperparameter optimization, model validation and ultimately deployment of a selected model via genome-wide scoring of genomic variants. The workflow is applied to train Combined Annotation Dependent Depletion (CADD), a variant effect model that is scoring SNVs and InDels genome-wide. I show that the workflow can be quickly adapted to novel annotations by porting CADD to the genome reference GRCh38. Further, I demonstrate the integration of deep-neural network scores as features into a new CADD model, improving the annotation of RNA splicing events. Finally, I apply the workflow to train multiple variant effect models from training data that is based on variants selected by allele frequency. In conclusion, the developed workflow presents a flexible and scalable method to train variant effect scores. All software and developed scores are freely available from cadd.gs.washington.edu and cadd.bihealth.org
    corecore