3,042 research outputs found

    Lightweight Deep Learning Framework to Detect Botnets in IoT Sensor Networks by using Hybrid Self-Organizing Map

    Get PDF
    In recent years, we have witnessed a massive growth of intrusion attacks targeted at the internet of things (IoT) devices. Due to inherent security vulnerabilities, it has become an easy target for hackers to target these devices. Recent studies have been focusing on deploying intrusion detection systems at the edge of the network within these devices to localize threat mitigation to avoid computational expenses. Intrusion detection systems based on machine learning and deep learning algorithm have demonstrated the potential capability to detect zero-day attacks where traditional signature-based detection falls short. The paper aims to propose a lightweight and robust deep learning framework for intrusion detection that has computational potential to be deployed within IoT devices. The research builds upon previous researches showing the demonstrated efficiency of anomaly detection rates of self-organizing map-based intrusion. The paper will contribute to the existing body of knowledge by creating a hybrid self-organizing map (SOM) for the purpose of detecting botnet attacks and analyzing its accuracy compared with a traditional supervised artificial neural network (ANN). The paper also aims to answer questions regarding the computational efficiency of our hybrid self-organizing map by measuring the CPU consumption based on time to train model. The deep learning prototypes will be trained on the NSL-KDD dataset and Detection of IoT botnet Attacks dataset. The study will evaluate the performance of a self-organizing map based k-nearest neighbor prototype with the performance of a supervised artificial neural network based on validation metrics such as confusion matrix, f1, recall, precision, and accuracy score

    Supervised Encoding for Discrete Representation Learning

    Full text link
    Classical supervised classification tasks search for a nonlinear mapping that maps each encoded feature directly to a probability mass over the labels. Such a learning framework typically lacks the intuition that encoded features from the same class tend to be similar and thus has little interpretability for the learned features. In this paper, we propose a novel supervised learning model named Supervised-Encoding Quantizer (SEQ). The SEQ applies a quantizer to cluster and classify the encoded features. We found that the quantizer provides an interpretable graph where each cluster in the graph represents a class of data samples that have a particular style. We also trained a decoder that can decode convex combinations of the encoded features from similar and different clusters and provide guidance on style transfer between sub-classes

    Learning Vector Quantization, Hebbian Learning, and Self-Organizing Map for Classification

    Get PDF
    Deep Learning has been rapidly developed. Almost all proposed methods already have very high accuracy. Most of these methods still use techniques from the past with some modifications to adapt to existing modules. Sometimes it is necessary to understand past methods to produce new methods. Therefore, this research examines past models that have the potential to improve the performance of existing deep learning models. The methods to be examined include Learning Vector Quantization (LVQ), Hebbian learning, and Self-Organizing Map (SOM). The iris dataset available on Scikit-learn (SKlearn) is used here for testing in cases of supervised learning and unsupervised learning (especially SOM). The results show that LVQ has a good accuracy of 93%, while Hebbian learning has an accuracy of 56%. SOM fluctuates between 88% and 93%. Although the accuracy of SOM does not exceed LVQ, this model does not require labels in its training process

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202
    corecore