100 research outputs found

    Learning reliable representations when proxy objectives fail

    Get PDF
    Representation learning involves using an objective to learn a mapping from data space to a representation space. When the downstream task for which a mapping must be learned is unknown, or is too costly to cast as an objective, we must rely on proxy objectives for learning. In this Thesis I focus on representation learning for images, and address three cases where proxy objectives fail to produce a mapping that performs well on the downstream tasks. When learning neural network mappings from image space to a discrete hash space for fast content-based image retrieval, a proxy objective is needed which captures the requirement for relevant responses to be nearer to the hash of any query than irrelevant ones. At the same time, it is important to ensure an even distribution of image hashes across the whole hash space for efficient information use and high discrimination. Proxy objectives fail when they do not meet these requirements. I propose composing hash codes in two parts. First a standard classifier is used to predict class labels that are converted to a binary representation for state-of-the-art performance on the image retrieval task. Second, a binary deep decision tree layer (DDTL) is used to model further intra-class differences and produce approximately evenly distributed hash codes. The DDTL requires no discretisation during learning and produces hash codes that enable better discrimination between data in the same class when compared to previous methods, while remaining robust to real-world augmentations in the data space. In the scenario where we require a neural network to partition the data into clusters that correspond well with ground-truth labels, a proxy objective is needed to define how these clusters are formed. One such proxy objective involves maximising the mutual information between cluster assignments made by a neural network from multiple views. In this context, views are different augmentations of the same image and the cluster assignments are the representations computed by a neural network. I demonstrate that this proxy objective produces parameters for the neural network that are sub-optimal in that a better set of parameters can be found using the same objective and a different training method. I introduce deep hierarchical object grouping (DHOG) as a method to learn a hierarchy (in the sense of easy-to-hard orderings, not structure) of solutions to the proxy objective and show how this improves performance on the downstream task. When there are features in the training data from which it is easier to compute class predictions (e.g., background colour), when compared to features for which it is relatively more difficult to compute class predictions (e.g., digit type), standard classification objectives (e.g., cross-entropy) fail to produce robust classifiers. The problem is that if a model learns to rely on `easy' features it will also ignore `complex' features (easy versus complex are purely relative in this case). I introduce latent adversarial debiasing (LAD) to decouple easy features from the class labels by first modelling the underlying structure of the training data as a latent representation using a vector-quantised variational autoencoder, and then I use a gradient-based procedure to adjust the features in this representation to confuse the predictions of a constrained classifier trained to predict class labels from the same representation. The adjusted representations of the data are then decoded to produce an augmented training dataset that can be used for training in a standard manner. I show in the aforementioned scenarios that proxy objectives can fail and demonstrate that alternative approaches can mitigate against the associated failures. I suggest an analytic approach to understanding the limits of proxy objectives for every use case in order to make the adjustments to the data or the objectives and ensure good performance on downstream tasks

    Data-driven shape analysis and processing

    Get PDF
    Data-driven methods serve an increasingly important role in discovering geometric, structural, and semantic relationships between shapes. In contrast to traditional approaches that process shapes in isolation of each other, data-driven methods aggregate information from 3D model collections to improve the analysis, modeling and editing of shapes. Through reviewing the literature, we provide an overview of the main concepts and components of these methods, as well as discuss their application to classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Advances in Nonnegative Matrix Decomposition with Application to Cluster Analysis

    Get PDF
    Nonnegative Matrix Factorization (NMF) has found a wide variety of applications in machine learning and data mining. NMF seeks to approximate a nonnegative data matrix by a product of several low-rank factorizing matrices, some of which are constrained to be nonnegative. Such additive nature often results in parts-based representation of the data, which is a desired property especially for cluster analysis.  This thesis presents advances in NMF with application in cluster analysis. It reviews a class of higher-order NMF methods called Quadratic Nonnegative Matrix Factorization (QNMF). QNMF differs from most existing NMF methods in that some of its factorizing matrices occur twice in the approximation. The thesis also reviews a structural matrix decomposition method based on Data-Cluster-Data (DCD) random walk. DCD goes beyond matrix factorization and has a solid probabilistic interpretation by forming the approximation with cluster assigning probabilities only. Besides, the Kullback-Leibler divergence adopted by DCD is advantageous in handling sparse similarities for cluster analysis.  Multiplicative update algorithms have been commonly used for optimizing NMF objectives, since they naturally maintain the nonnegativity constraint of the factorizing matrix and require no user-specified parameters. In this work, an adaptive multiplicative update algorithm is proposed to increase the convergence speed of QNMF objectives.  Initialization conditions play a key role in cluster analysis. In this thesis, a comprehensive initialization strategy is proposed to improve the clustering performance by combining a set of base clustering methods. The proposed method can better accommodate clustering methods that need a careful initialization such as the DCD.  The proposed methods have been tested on various real-world datasets, such as text documents, face images, protein, etc. In particular, the proposed approach has been applied to the cluster analysis of emotional data

    From Pixels to Spikes: Efficient Multimodal Learning in the Presence of Domain Shift

    Get PDF
    Computer vision aims to provide computers with a conceptual understanding of images or video by learning a high-level representation. This representation is typically derived from the pixel domain (i.e., RGB channels) for tasks such as image classification or action recognition. In this thesis, we explore how RGB inputs can either be pre-processed or supplemented with other compressed visual modalities, in order to improve the accuracy-complexity tradeoff for various computer vision tasks. Beginning with RGB-domain data only, we propose a multi-level, Voronoi based spatial partitioning of images, which are individually processed by a convolutional neural network (CNN), to improve the scale invariance of the embedding. We combine this with a novel and efficient approach for optimal bit allocation within the quantized cell representations. We evaluate this proposal on the content-based image retrieval task, which constitutes finding similar images in a dataset to a given query. We then move to the more challenging domain of action recognition, where a video sequence is classified according to its constituent action. In this case, we demonstrate how the RGB modality can be supplemented with a flow modality, comprising motion vectors extracted directly from the video codec. The motion vectors (MVs) are used both as input to a CNN and as an activity sensor for providing selective macroblock (MB) decoding of RGB frames instead of full-frame decoding. We independently train two CNNs on RGB and MV correspondences and then fuse their scores during inference, demonstrating faster end-to-end processing and competitive classification accuracy to recent work. In order to explore the use of more efficient sensing modalities, we replace the MV stream with a neuromorphic vision sensing (NVS) stream for action recognition. NVS hardware mimics the biological retina and operates with substantially lower power and at significantly higher sampling rates than conventional active pixel sensing (APS) cameras. Due to the lack of training data in this domain, we generate emulated NVS frames directly from consecutive RGB frames and use these to train a teacher-student framework that additionally leverages on the abundance of optical flow training data. In the final part of this thesis, we introduce a novel unsupervised domain adaptation method for further minimizing the domain shift between emulated (source) and real (target) NVS data domains

    New scalable machine learning methods: beyond classification and regression

    Get PDF
    Programa Oficial de Doutoramento en Computación . 5009V01[Abstract] The recent surge in data available has spawned a new and promising age of machine learning. Success cases of machine learning are arriving at an increasing rate as some algorithms are able to leverage immense amounts of data to produce great complicated predictions. Still, many algorithms in the toolbox of the machine learning practitioner have been render useless in this new scenario due to the complications associated with large-scale learning. Handling large datasets entails logistical problems, limits the computational and spatial complexity of the used algorithms, favours methods with few or no hyperparameters to be con gured and exhibits speci c characteristics that complicate learning. This thesis is centered on the scalability of machine learning algorithms, that is, their capacity to maintain their e ectivity as the scale of the data grows, and how it can be improved. We focus on problems for which the existing solutions struggle when the scale grows. Therefore, we skip classi cation and regression problems and focus on feature selection, anomaly detection, graph construction and explainable machine learning. We analyze four di erent strategies to obtain scalable algorithms. First, we explore distributed computation, which is used in all of the presented algorithms. Besides this technique, we also examine the use of approximate models to speed up computations, the design of new models that take advantage of a characteristic of the input data to simplify training and the enhancement of simple models to enable them to manage large-scale learning. We have implemented four new algorithms and six versions of existing ones that tackle the mentioned problems and for each one we report experimental results that show both their validity in comparison with competing methods and their capacity to scale to large datasets. All the presented algorithms have been made available for download and are being published in journals to enable practitioners and researchers to use them.[Resumen] El reciente aumento de la cantidad de datos disponibles ha dado lugar a una nueva y prometedora era del aprendizaje máquina. Los éxitos en este campo se están sucediendo a un ritmo cada vez mayor gracias a la capacidad de algunos algoritmos de aprovechar inmensas cantidades de datos para producir predicciones difíciles y muy certeras. Sin embargo, muchos de los algoritmos hasta ahora disponibles para los científicos de datos han perdido su efectividad en este nuevo escenario debido a las complicaciones asociadas al aprendizaje a gran escala. Trabajar con grandes conjuntos de datos conlleva problemas logísticos, limita la complejidad computacional y espacial de los algoritmos utilizados, favorece los métodos con pocos o ningún hiperparámetro a configurar y muestra complicaciones específicas que dificultan el aprendizaje. Esta tesis se centra en la escalabilidad de los algoritmos de aprendizaje máquina, es decir, en su capacidad de mantener su efectividad a medida que la escala del conjunto de datos aumenta. Ponemos el foco en problemas cuyas soluciones actuales tienen problemas al aumentar la escala. Por tanto, obviando la clasificación y la regresión, nos centramos en la selección de características, detección de anomalías, construcción de grafos y en el aprendizaje máquina explicable. Analizamos cuatro estrategias diferentes para obtener algoritmos escalables. En primer lugar, exploramos la computación distribuida, que es utilizada en todos los algoritmos presentados. Además de esta técnica, también examinamos el uso de modelos aproximados para acelerar los cálculos, el dise~no de modelos que aprovechan una particularidad de los datos de entrada para simplificar el entrenamiento y la potenciación de modelos simples para adecuarlos al aprendizaje a gran escala. Hemos implementado cuatro nuevos algoritmos y seis versiones de algoritmos existentes que tratan los problemas mencionados y para cada uno de ellos detallamos resultados experimentales que muestran tanto su validez en comparación con los métodos previamente disponibles como su capacidad para escalar a grandes conjuntos de datos. Todos los algoritmos presentados han sido puestos a disposición del lector para su descarga y se han difundido mediante publicaciones en revistas científicas para facilitar que tanto investigadores como científicos de datos puedan conocerlos y utilizarlos.[Resumo] O recente aumento na cantidade de datos dispo~nibles deu lugar a unha nova e prometedora era no aprendizaxe máquina. Os éxitos neste eido estanse a suceder a un ritmo cada vez maior gracias a capacidade dalgúns algoritmos de aproveitar inmensas cantidades de datos para producir prediccións difíciles e moi acertadas. Non obstante, moitos dos algoritmos ata agora dispo~nibles para os científicos de datos perderon a súa efectividade neste novo escenario por mor das complicacións asociadas ao aprendizaxe a grande escala. Traballar con grandes conxuntos de datos leva consigo problemas loxísticos, limita a complexidade computacional e espacial dos algoritmos empregados, favorece os métodos con poucos ou ningún hiperparámetro a configurar e ten complicacións específicas que dificultan o aprendizaxe. Esta tese céntrase na escalabilidade dos algoritmos de aprendizaxe máquina, é dicir, na súa capacidade de manter a súa efectividade a medida que a escala do conxunto de datos aumenta. Tratamos problemas para os que as solucións dispoñibles teñen problemas cando crece a escala. Polo tanto, deixando no canto a clasificación e a regresión, centrámonos na selección de características, detección de anomalías, construcción de grafos e no aprendizaxe máquina explicable. Analizamos catro estratexias diferentes para obter algoritmos escalables. En primeiro lugar, exploramos a computación distribuída, que empregamos en tódolos algoritmos presentados. Ademáis desta técnica, tamén examinamos o uso de modelos aproximados para acelerar os cálculos, o deseño de modelos que aproveitan unha particularidade dos datos de entrada para simplificar o adestramento e a potenciación de modelos sinxelos para axeitalos ao aprendizaxe a gran escala. Implementamos catro novos algoritmos e seis versións de algoritmos existentes que tratan os problemas mencionados e para cada un deles expoñemos resultados experimentais que mostran tanto a súa validez en comparación cos métodos previamente dispoñibles como a súa capacidade para escalar a grandes conxuntos de datos. Tódolos algoritmos presentados foron postos a disposición do lector para a súa descarga e difundíronse mediante publicacións en revistas científicas para facilitar que tanto investigadores como científicos de datos poidan coñecelos e empregalos

    Leveraging Relational Structure through Message Passing for Modelling Non-Euclidean Data

    Get PDF
    Modelling non-Euclidean data is difficult since objects for comparison can be formed of different numbers of constituent parts with different numbers of relations between them, and traditional (Euclidean) methods are non-trivial to apply. Message passing enables such modelling by leveraging the structure of the relations within a (or between) given object(s) in order to represent and compare structure in a vectorized form of fixed dimensions. In this work, we contribute novel message passing techniques that improve state of the art for non-Euclidean modelling in a set of specifically chosen domains. In particular, (1) we introduce an attention-based structure-aware global pooling operator for graph classification and demonstrate its effectiveness on a range of chemical property prediction benchmarks, we also show that our method outperforms state of the art graph classifiers in a graph isomorphism test, and demonstrate the interpretability of our method with respect to the learned attention coefficients. (2) We propose a style similarity measure for Boundary Representations (B-Reps) that leverages the style signals in the second order statistics of the activations in a pre-trained (unsupervised) 3D encoder, and learns their relative importance to an end-user through few-shot learning. Our approach differs from existing data-driven 3D style methods since it may be used in completely unsupervised settings. We show quantitatively that our proposed method with B-Reps is able to capture stronger style signals than alternative methods on meshes and point clouds despite its significantly greater computational efficiency. We also show it is able to generate meaningful style gradients with respect to the input shape. (3) We introduce a novel message passing-based model of computation and demonstrate its effectiveness in expressing the complex dependencies of biological systems necessary to model life-like systems and tracing cell lineage during cancerous tumour growth, and demonstrate the improvement over existing methods in terms of post-analysis

    Graph Priors, Optimal Transport, and Deep Learning in Biomedical Discovery

    Get PDF
    Recent advances in biomedical data collection allows the collection of massive datasets measuring thousands of features in thousands to millions of individual cells. This data has the potential to advance our understanding of biological mechanisms at a previously impossible resolution. However, there are few methods to understand data of this scale and type. While neural networks have made tremendous progress on supervised learning problems, there is still much work to be done in making them useful for discovery in data with more difficult to represent supervision. The flexibility and expressiveness of neural networks is sometimes a hindrance in these less supervised domains, as is the case when extracting knowledge from biomedical data. One type of prior knowledge that is more common in biological data comes in the form of geometric constraints. In this thesis, we aim to leverage this geometric knowledge to create scalable and interpretable models to understand this data. Encoding geometric priors into neural network and graph models allows us to characterize the models’ solutions as they relate to the fields of graph signal processing and optimal transport. These links allow us to understand and interpret this datatype. We divide this work into three sections. The first borrows concepts from graph signal processing to construct more interpretable and performant neural networks by constraining and structuring the architecture. The second borrows from the theory of optimal transport to perform anomaly detection and trajectory inference efficiently and with theoretical guarantees. The third examines how to compare distributions over an underlying manifold, which can be used to understand how different perturbations or conditions relate. For this we design an efficient approximation of optimal transport based on diffusion over a joint cell graph. Together, these works utilize our prior understanding of the data geometry to create more useful models of the data. We apply these methods to molecular graphs, images, single-cell sequencing, and health record data
    • …
    corecore