11,053 research outputs found

    Deep Structured Output Learning for Unconstrained Text Recognition

    Full text link
    We develop a representation suitable for the unconstrained recognition of words in natural images: the general case of no fixed lexicon and unknown length. To this end we propose a convolutional neural network (CNN) based architecture which incorporates a Conditional Random Field (CRF) graphical model, taking the whole word image as a single input. The unaries of the CRF are provided by a CNN that predicts characters at each position of the output, while higher order terms are provided by another CNN that detects the presence of N-grams. We show that this entire model (CRF, character predictor, N-gram predictor) can be jointly optimised by back-propagating the structured output loss, essentially requiring the system to perform multi-task learning, and training uses purely synthetically generated data. The resulting model is a more accurate system on standard real-world text recognition benchmarks than character prediction alone, setting a benchmark for systems that have not been trained on a particular lexicon. In addition, our model achieves state-of-the-art accuracy in lexicon-constrained scenarios, without being specifically modelled for constrained recognition. To test the generalisation of our model, we also perform experiments with random alpha-numeric strings to evaluate the method when no visual language model is applicable.Comment: arXiv admin note: text overlap with arXiv:1406.222

    Reading Scene Text in Deep Convolutional Sequences

    Full text link
    We develop a Deep-Text Recurrent Network (DTRN) that regards scene text reading as a sequence labelling problem. We leverage recent advances of deep convolutional neural networks to generate an ordered high-level sequence from a whole word image, avoiding the difficult character segmentation problem. Then a deep recurrent model, building on long short-term memory (LSTM), is developed to robustly recognize the generated CNN sequences, departing from most existing approaches recognising each character independently. Our model has a number of appealing properties in comparison to existing scene text recognition methods: (i) It can recognise highly ambiguous words by leveraging meaningful context information, allowing it to work reliably without either pre- or post-processing; (ii) the deep CNN feature is robust to various image distortions; (iii) it retains the explicit order information in word image, which is essential to discriminate word strings; (iv) the model does not depend on pre-defined dictionary, and it can process unknown words and arbitrary strings. Codes for the DTRN will be available.Comment: To appear in the 13th AAAI Conference on Artificial Intelligence (AAAI-16), 201

    AON: Towards Arbitrarily-Oriented Text Recognition

    Full text link
    Recognizing text from natural images is a hot research topic in computer vision due to its various applications. Despite the enduring research of several decades on optical character recognition (OCR), recognizing texts from natural images is still a challenging task. This is because scene texts are often in irregular (e.g. curved, arbitrarily-oriented or seriously distorted) arrangements, which have not yet been well addressed in the literature. Existing methods on text recognition mainly work with regular (horizontal and frontal) texts and cannot be trivially generalized to handle irregular texts. In this paper, we develop the arbitrary orientation network (AON) to directly capture the deep features of irregular texts, which are combined into an attention-based decoder to generate character sequence. The whole network can be trained end-to-end by using only images and word-level annotations. Extensive experiments on various benchmarks, including the CUTE80, SVT-Perspective, IIIT5k, SVT and ICDAR datasets, show that the proposed AON-based method achieves the-state-of-the-art performance in irregular datasets, and is comparable to major existing methods in regular datasets.Comment: Accepted by CVPR201
    • …
    corecore