1,047 research outputs found

    Deep Speech Denoising with Vector Space Projections

    Full text link
    We propose an algorithm to denoise speakers from a single microphone in the presence of non-stationary and dynamic noise. Our approach is inspired by the recent success of neural network models separating speakers from other speakers and singers from instrumental accompaniment. Unlike prior art, we leverage embedding spaces produced with source-contrastive estimation, a technique derived from negative sampling techniques in natural language processing, while simultaneously obtaining a continuous inference mask. Our embedding space directly optimizes for the discrimination of speaker and noise by jointly modeling their characteristics. This space is generalizable in that it is not speaker or noise specific and is capable of denoising speech even if the model has not seen the speaker in the training set. Parameters are trained with dual objectives: one that promotes a selective bandpass filter that eliminates noise at time-frequency positions that exceed signal power, and another that proportionally splits time-frequency content between signal and noise. We compare to state of the art algorithms as well as traditional sparse non-negative matrix factorization solutions. The resulting algorithm avoids severe computational burden by providing a more intuitive and easily optimized approach, while achieving competitive accuracy.Comment: arXiv admin note: text overlap with arXiv:1705.0466

    One-dimensional Deep Image Prior for Time Series Inverse Problems

    Full text link
    We extend the Deep Image Prior (DIP) framework to one-dimensional signals. DIP is using a randomly initialized convolutional neural network (CNN) to solve linear inverse problems by optimizing over weights to fit the observed measurements. Our main finding is that properly tuned one-dimensional convolutional architectures provide an excellent Deep Image Prior for various types of temporal signals including audio, biological signals, and sensor measurements. We show that our network can be used in a variety of recovery tasks including missing value imputation, blind denoising, and compressed sensing from random Gaussian projections. The key challenge is how to avoid overfitting by carefully tuning early stopping, total variation, and weight decay regularization. Our method requires up to 4 times fewer measurements than Lasso and outperforms NLM-VAMP for random Gaussian measurements on audio signals, has similar imputation performance to a Kalman state-space model on a variety of data, and outperforms wavelet filtering in removing additive noise from air-quality sensor readings

    Monaural Audio Speaker Separation with Source Contrastive Estimation

    Full text link
    We propose an algorithm to separate simultaneously speaking persons from each other, the "cocktail party problem", using a single microphone. Our approach involves a deep recurrent neural networks regression to a vector space that is descriptive of independent speakers. Such a vector space can embed empirically determined speaker characteristics and is optimized by distinguishing between speaker masks. We call this technique source-contrastive estimation. The methodology is inspired by negative sampling, which has seen success in natural language processing, where an embedding is learned by correlating and de-correlating a given input vector with output weights. Although the matrix determined by the output weights is dependent on a set of known speakers, we only use the input vectors during inference. Doing so will ensure that source separation is explicitly speaker-independent. Our approach is similar to recent deep neural network clustering and permutation-invariant training research; we use weighted spectral features and masks to augment individual speaker frequencies while filtering out other speakers. We avoid, however, the severe computational burden of other approaches with our technique. Furthermore, by training a vector space rather than combinations of different speakers or differences thereof, we avoid the so-called permutation problem during training. Our algorithm offers an intuitive, computationally efficient response to the cocktail party problem, and most importantly boasts better empirical performance than other current techniques

    RARE: Image Reconstruction using Deep Priors Learned without Ground Truth

    Full text link
    Regularization by denoising (RED) is an image reconstruction framework that uses an image denoiser as a prior. Recent work has shown the state-of-the-art performance of RED with learned denoisers corresponding to pre-trained convolutional neural nets (CNNs). In this work, we propose to broaden the current denoiser-centric view of RED by considering priors corresponding to networks trained for more general artifact-removal. The key benefit of the proposed family of algorithms, called regularization by artifact-removal (RARE), is that it can leverage priors learned on datasets containing only undersampled measurements. This makes RARE applicable to problems where it is practically impossible to have fully-sampled groundtruth data for training. We validate RARE on both simulated and experimentally collected data by reconstructing a free-breathing whole-body 3D MRIs into ten respiratory phases from heavily undersampled k-space measurements. Our results corroborate the potential of learning regularizers for iterative inversion directly on undersampled and noisy measurements.Comment: In press for IEEE Journal of Special Topics in Signal Processin

    Regularizing Autoencoder-Based Matrix Completion Models via Manifold Learning

    Full text link
    Autoencoders are popular among neural-network-based matrix completion models due to their ability to retrieve potential latent factors from the partially observed matrices. Nevertheless, when training data is scarce their performance is significantly degraded due to overfitting. In this paper, we mit- igate overfitting with a data-dependent regularization technique that relies on the principles of multi-task learning. Specifically, we propose an autoencoder-based matrix completion model that performs prediction of the unknown matrix values as a main task, and manifold learning as an auxiliary task. The latter acts as an inductive bias, leading to solutions that generalize better. The proposed model outperforms the existing autoencoder-based models designed for matrix completion, achieving high reconstruction accuracy in well-known datasets.Comment: 5 pages, Eusipco 201

    Denoising Gravitational Waves using Deep Learning with Recurrent Denoising Autoencoders

    Full text link
    Gravitational wave astronomy is a rapidly growing field of modern astrophysics, with observations being made frequently by the LIGO detectors. Gravitational wave signals are often extremely weak and the data from the detectors, such as LIGO, is contaminated with non-Gaussian and non-stationary noise, often containing transient disturbances which can obscure real signals. Traditional denoising methods, such as principal component analysis and dictionary learning, are not optimal for dealing with this non-Gaussian noise, especially for low signal-to-noise ratio gravitational wave signals. Furthermore, these methods are computationally expensive on large datasets. To overcome these issues, we apply state-of-the-art signal processing techniques, based on recent groundbreaking advancements in deep learning, to denoise gravitational wave signals embedded either in Gaussian noise or in real LIGO noise. We introduce SMTDAE, a Staired Multi-Timestep Denoising Autoencoder, based on sequence-to-sequence bi-directional Long-Short-Term-Memory recurrent neural networks. We demonstrate the advantages of using our unsupervised deep learning approach and show that, after training only using simulated Gaussian noise, SMTDAE achieves superior recovery performance for gravitational wave signals embedded in real non-Gaussian LIGO noise.Comment: 5 pages, 2 figure

    End-to-End Learning for Structured Prediction Energy Networks

    Full text link
    Structured Prediction Energy Networks (SPENs) are a simple, yet expressive family of structured prediction models (Belanger and McCallum, 2016). An energy function over candidate structured outputs is given by a deep network, and predictions are formed by gradient-based optimization. This paper presents end-to-end learning for SPENs, where the energy function is discriminatively trained by back-propagating through gradient-based prediction. In our experience, the approach is substantially more accurate than the structured SVM method of Belanger and McCallum (2016), as it allows us to use more sophisticated non-convex energies. We provide a collection of techniques for improving the speed, accuracy, and memory requirements of end-to-end SPENs, and demonstrate the power of our method on 7-Scenes image denoising and CoNLL-2005 semantic role labeling tasks. In both, inexact minimization of non-convex SPEN energies is superior to baseline methods that use simplistic energy functions that can be minimized exactly.Comment: ICML 201

    Multigrid Backprojection Super-Resolution and Deep Filter Visualization

    Full text link
    We introduce a novel deep-learning architecture for image upscaling by large factors (e.g. 4x, 8x) based on examples of pristine high-resolution images. Our target is to reconstruct high-resolution images from their downscale versions. The proposed system performs a multi-level progressive upscaling, starting from small factors (2x) and updating for higher factors (4x and 8x). The system is recursive as it repeats the same procedure at each level. It is also residual since we use the network to update the outputs of a classic upscaler. The network residuals are improved by Iterative Back-Projections (IBP) computed in the features of a convolutional network. To work in multiple levels we extend the standard back-projection algorithm using a recursion analogous to Multi-Grid algorithms commonly used as solvers of large systems of linear equations. We finally show how the network can be interpreted as a standard upsampling-and-filter upscaler with a space-variant filter that adapts to the geometry. This approach allows us to visualize how the network learns to upscale. Finally, our system reaches state of the art quality for models with relatively few number of parameters.Comment: Spotlight paper in the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    Generalized K-fan Multimodal Deep Model with Shared Representations

    Full text link
    Multimodal learning with deep Boltzmann machines (DBMs) is an generative approach to fuse multimodal inputs, and can learn the shared representation via Contrastive Divergence (CD) for classification and information retrieval tasks. However, it is a 2-fan DBM model, and cannot effectively handle multiple prediction tasks. Moreover, this model cannot recover the hidden representations well by sampling from the conditional distribution when more than one modalities are missing. In this paper, we propose a K-fan deep structure model, which can handle the multi-input and muti-output learning problems effectively. In particular, the deep structure has K-branch for different inputs where each branch can be composed of a multi-layer deep model, and a shared representation is learned in an discriminative manner to tackle multimodal tasks. Given the deep structure, we propose two objective functions to handle two multi-input and multi-output tasks: joint visual restoration and labeling, and the multi-view multi-calss object recognition tasks. To estimate the model parameters, we initialize the deep model parameters with CD to maximize the joint distribution, and then we use backpropagation to update the model according to specific objective function. The experimental results demonstrate that the model can effectively leverages multi-source information and predict multiple tasks well over competitive baselines.Comment: 11 pages, 5 figure

    Rapid Feature Learning with Stacked Linear Denoisers

    Full text link
    We investigate unsupervised pre-training of deep architectures as feature generators for "shallow" classifiers. Stacked Denoising Autoencoders (SdA), when used as feature pre-processing tools for SVM classification, can lead to significant improvements in accuracy - however, at the price of a substantial increase in computational cost. In this paper we create a simple algorithm which mimics the layer by layer training of SdAs. However, in contrast to SdAs, our algorithm requires no training through gradient descent as the parameters can be computed in closed-form. It can be implemented in less than 20 lines of MATLABTMand reduces the computation time from several hours to mere seconds. We show that our feature transformation reliably improves the results of SVM classification significantly on all our data sets - often outperforming SdAs and even deep neural networks in three out of four deep learning benchmarks.Comment: 10 page
    • …
    corecore