3,108 research outputs found

    Deep Spatio-Temporal Random Fields for Efficient Video Segmentation.

    Get PDF
    In this work we introduce a time- and memory-efficient method for structured prediction that couples neuron decisions across both space at time. We show that we are able to perform exact and efficient inference on a densely-connected spatio-temporal graph by capitalizing on recent advances on deep Gaussian Conditional Random Fields (GCRFs). Our method, called VideoGCRF is (a) efficient, (b) has a unique global minimum, and (c) can be trained end-to-end alongside contemporary deep networks for video understanding. We experiment with multiple connectivity patterns in the temporal domain, and present empirical improvements over strong baselines on the tasks of both semantic and instance segmentation of videos. Our implementation is based on the Caffe2 framework and will be available at https://github.com/siddharthachandra/gcrf-v3.0

    Unsupervised Action Proposal Ranking through Proposal Recombination

    Full text link
    Recently, action proposal methods have played an important role in action recognition tasks, as they reduce the search space dramatically. Most unsupervised action proposal methods tend to generate hundreds of action proposals which include many noisy, inconsistent, and unranked action proposals, while supervised action proposal methods take advantage of predefined object detectors (e.g., human detector) to refine and score the action proposals, but they require thousands of manual annotations to train. Given the action proposals in a video, the goal of the proposed work is to generate a few better action proposals that are ranked properly. In our approach, we first divide action proposal into sub-proposal and then use Dynamic Programming based graph optimization scheme to select the optimal combinations of sub-proposals from different proposals and assign each new proposal a score. We propose a new unsupervised image-based actioness detector that leverages web images and employs it as one of the node scores in our graph formulation. Moreover, we capture motion information by estimating the number of motion contours within each action proposal patch. The proposed method is an unsupervised method that neither needs bounding box annotations nor video level labels, which is desirable with the current explosion of large-scale action datasets. Our approach is generic and does not depend on a specific action proposal method. We evaluate our approach on several publicly available trimmed and un-trimmed datasets and obtain better performance compared to several proposal ranking methods. In addition, we demonstrate that properly ranked proposals produce significantly better action detection as compared to state-of-the-art proposal based methods
    • …
    corecore