1,947 research outputs found

    ContextVP: Fully Context-Aware Video Prediction

    Full text link
    Video prediction models based on convolutional networks, recurrent networks, and their combinations often result in blurry predictions. We identify an important contributing factor for imprecise predictions that has not been studied adequately in the literature: blind spots, i.e., lack of access to all relevant past information for accurately predicting the future. To address this issue, we introduce a fully context-aware architecture that captures the entire available past context for each pixel using Parallel Multi-Dimensional LSTM units and aggregates it using blending units. Our model outperforms a strong baseline network of 20 recurrent convolutional layers and yields state-of-the-art performance for next step prediction on three challenging real-world video datasets: Human 3.6M, Caltech Pedestrian, and UCF-101. Moreover, it does so with fewer parameters than several recently proposed models, and does not rely on deep convolutional networks, multi-scale architectures, separation of background and foreground modeling, motion flow learning, or adversarial training. These results highlight that full awareness of past context is of crucial importance for video prediction.Comment: 19 pages. ECCV 2018 oral presentation. Project webpage is at https://wonmin-byeon.github.io/publication/2018-ecc

    Transforming spatio-temporal self-attention using action embedding for skeleton-based action recognition

    Get PDF
    Over the past few years, skeleton-based action recognition has attracted great success because the skeleton data is immune to illumination variation, view-point variation, background clutter, scaling, and camera motion. However, effective modeling of the latent information of skeleton data is still a challenging problem. Therefore, in this paper, we propose a novel idea of action embedding with a self-attention Transformer network for skeleton-based action recognition. Our proposed technology mainly comprises of two modules as, i) action embedding and ii) self-attention Transformer. The action embedding encodes the relationship between corresponding body joints (e.g., joints of both hands move together for performing clapping action) and thus captures the spatial features of joints. Meanwhile, temporal features and dependencies of body joints are modeled using Transformer architecture. Our method works in a single-stream (end-to-end) fashion, where MLP is used for classification. We carry out an ablation study and evaluate the performance of our model on a small-scale SYSU-3D dataset and large-scale NTU-RGB+D and NTU-RGB+D 120 datasets where the results establish that our method performs better than other state-of-the-art architectures.publishedVersio

    Efficient Online Processing with Deep Neural Networks

    Full text link
    The capabilities and adoption of deep neural networks (DNNs) grow at an exhilarating pace: Vision models accurately classify human actions in videos and identify cancerous tissue in medical scans as precisely than human experts; large language models answer wide-ranging questions, generate code, and write prose, becoming the topic of everyday dinner-table conversations. Even though their uses are exhilarating, the continually increasing model sizes and computational complexities have a dark side. The economic cost and negative environmental externalities of training and serving models is in evident disharmony with financial viability and climate action goals. Instead of pursuing yet another increase in predictive performance, this dissertation is dedicated to the improvement of neural network efficiency. Specifically, a core contribution addresses the efficiency aspects during online inference. Here, the concept of Continual Inference Networks (CINs) is proposed and explored across four publications. CINs extend prior state-of-the-art methods developed for offline processing of spatio-temporal data and reuse their pre-trained weights, improving their online processing efficiency by an order of magnitude. These advances are attained through a bottom-up computational reorganization and judicious architectural modifications. The benefit to online inference is demonstrated by reformulating several widely used network architectures into CINs, including 3D CNNs, ST-GCNs, and Transformer Encoders. An orthogonal contribution tackles the concurrent adaptation and computational acceleration of a large source model into multiple lightweight derived models. Drawing on fusible adapter networks and structured pruning, Structured Pruning Adapters achieve superior predictive accuracy under aggressive pruning using significantly fewer learned weights compared to fine-tuning with pruning.Comment: PhD Dissertatio

    Linking social media, medical literature, and clinical notes using deep learning.

    Get PDF
    Researchers analyze data, information, and knowledge through many sources, formats, and methods. The dominant data format includes text and images. In the healthcare industry, professionals generate a large quantity of unstructured data. The complexity of this data and the lack of computational power causes delays in analysis. However, with emerging deep learning algorithms and access to computational powers such as graphics processing unit (GPU) and tensor processing units (TPUs), processing text and images is becoming more accessible. Deep learning algorithms achieve remarkable results in natural language processing (NLP) and computer vision. In this study, we focus on NLP in the healthcare industry and collect data not only from electronic medical records (EMRs) but also medical literature and social media. We propose a framework for linking social media, medical literature, and EMRs clinical notes using deep learning algorithms. Connecting data sources requires defining a link between them, and our key is finding concepts in the medical text. The National Library of Medicine (NLM) introduces a Unified Medical Language System (UMLS) and we use this system as the foundation of our own system. We recognize social media’s dynamic nature and apply supervised and semi-supervised methodologies to generate concepts. Named entity recognition (NER) allows efficient extraction of information, or entities, from medical literature, and we extend the model to process the EMRs’ clinical notes via transfer learning. The results include an integrated, end-to-end, web-based system solution that unifies social media, literature, and clinical notes, and improves access to medical knowledge for the public and experts

    Node Embedding over Temporal Graphs

    Full text link
    In this work, we present a method for node embedding in temporal graphs. We propose an algorithm that learns the evolution of a temporal graph's nodes and edges over time and incorporates this dynamics in a temporal node embedding framework for different graph prediction tasks. We present a joint loss function that creates a temporal embedding of a node by learning to combine its historical temporal embeddings, such that it optimizes per given task (e.g., link prediction). The algorithm is initialized using static node embeddings, which are then aligned over the representations of a node at different time points, and eventually adapted for the given task in a joint optimization. We evaluate the effectiveness of our approach over a variety of temporal graphs for the two fundamental tasks of temporal link prediction and multi-label node classification, comparing to competitive baselines and algorithmic alternatives. Our algorithm shows performance improvements across many of the datasets and baselines and is found particularly effective for graphs that are less cohesive, with a lower clustering coefficient
    • …
    corecore