86,152 research outputs found

    Making AI Meaningful Again

    Get PDF
    Artificial intelligence (AI) research enjoyed an initial period of enthusiasm in the 1970s and 80s. But this enthusiasm was tempered by a long interlude of frustration when genuinely useful AI applications failed to be forthcoming. Today, we are experiencing once again a period of enthusiasm, fired above all by the successes of the technology of deep neural networks or deep machine learning. In this paper we draw attention to what we take to be serious problems underlying current views of artificial intelligence encouraged by these successes, especially in the domain of language processing. We then show an alternative approach to language-centric AI, in which we identify a role for philosophy

    SCREEN: Learning a Flat Syntactic and Semantic Spoken Language Analysis Using Artificial Neural Networks

    Get PDF
    In this paper, we describe a so-called screening approach for learning robust processing of spontaneously spoken language. A screening approach is a flat analysis which uses shallow sequences of category representations for analyzing an utterance at various syntactic, semantic and dialog levels. Rather than using a deeply structured symbolic analysis, we use a flat connectionist analysis. This screening approach aims at supporting speech and language processing by using (1) data-driven learning and (2) robustness of connectionist networks. In order to test this approach, we have developed the SCREEN system which is based on this new robust, learned and flat analysis. In this paper, we focus on a detailed description of SCREEN's architecture, the flat syntactic and semantic analysis, the interaction with a speech recognizer, and a detailed evaluation analysis of the robustness under the influence of noisy or incomplete input. The main result of this paper is that flat representations allow more robust processing of spontaneous spoken language than deeply structured representations. In particular, we show how the fault-tolerance and learning capability of connectionist networks can support a flat analysis for providing more robust spoken-language processing within an overall hybrid symbolic/connectionist framework.Comment: 51 pages, Postscript. To be published in Journal of Artificial Intelligence Research 6(1), 199

    Basic tasks of sentiment analysis

    Full text link
    Subjectivity detection is the task of identifying objective and subjective sentences. Objective sentences are those which do not exhibit any sentiment. So, it is desired for a sentiment analysis engine to find and separate the objective sentences for further analysis, e.g., polarity detection. In subjective sentences, opinions can often be expressed on one or multiple topics. Aspect extraction is a subtask of sentiment analysis that consists in identifying opinion targets in opinionated text, i.e., in detecting the specific aspects of a product or service the opinion holder is either praising or complaining about

    Going Deeper with Semantics: Video Activity Interpretation using Semantic Contextualization

    Full text link
    A deeper understanding of video activities extends beyond recognition of underlying concepts such as actions and objects: constructing deep semantic representations requires reasoning about the semantic relationships among these concepts, often beyond what is directly observed in the data. To this end, we propose an energy minimization framework that leverages large-scale commonsense knowledge bases, such as ConceptNet, to provide contextual cues to establish semantic relationships among entities directly hypothesized from video signal. We mathematically express this using the language of Grenander's canonical pattern generator theory. We show that the use of prior encoded commonsense knowledge alleviate the need for large annotated training datasets and help tackle imbalance in training through prior knowledge. Using three different publicly available datasets - Charades, Microsoft Visual Description Corpus and Breakfast Actions datasets, we show that the proposed model can generate video interpretations whose quality is better than those reported by state-of-the-art approaches, which have substantial training needs. Through extensive experiments, we show that the use of commonsense knowledge from ConceptNet allows the proposed approach to handle various challenges such as training data imbalance, weak features, and complex semantic relationships and visual scenes.Comment: Accepted to WACV 201
    • …
    corecore