2,698 research outputs found

    Sensing of inspiration events from speech:comparison of deep learning and linguistic methods

    Get PDF
    Respiratory chest belt sensor can be used to measure the respiratory rate and other respiratory health parameters. Virtual Respiratory Belt, VRB, algorithms estimate the belt sensor waveform from speech audio. In this paper we compare the detection of inspiration events (IE) from respiratory belt sensor data using a novel neural VRB algorithm and the detections based on time-aligned linguistic content. The results show the superiority of the VRB method over word pause detection or grammatical content segmentation. The comparison of the methods show that both read and spontaneous speech content has a significant amount of ungrammatical breathing, that is, breathing events that are not aligned with grammatically appropriate places in language. This study gives new insights into the development of VRB methods and adds to the general understanding of speech breathing behavior. Moreover, a new VRB method, VRBOLA, for the reconstruction of the continuous breathing waveform is demonstrated

    Sensing of inspiration events from speech:comparison of deep learning and linguistic methods

    Get PDF
    Respiratory chest belt sensor can be used to measure the respiratory rate and other respiratory health parameters. Virtual Respiratory Belt, VRB, algorithms estimate the belt sensor waveform from speech audio. In this paper we compare the detection of inspiration events (IE) from respiratory belt sensor data using a novel neural VRB algorithm and the detections based on time-aligned linguistic content. The results show the superiority of the VRB method over word pause detection or grammatical content segmentation. The comparison of the methods show that both read and spontaneous speech content has a significant amount of ungrammatical breathing, that is, breathing events that are not aligned with grammatically appropriate places in language. This study gives new insights into the development of VRB methods and adds to the general understanding of speech breathing behavior. Moreover, a new VRB method, VRBOLA, for the reconstruction of the continuous breathing waveform is demonstrated

    Augmentative and alternative communication (AAC) advances: A review of configurations for individuals with a speech disability

    Get PDF
    High-tech augmentative and alternative communication (AAC) methods are on a constant rise; however, the interaction between the user and the assistive technology is still challenged for an optimal user experience centered around the desired activity. This review presents a range of signal sensing and acquisition methods utilized in conjunction with the existing high-tech AAC platforms for individuals with a speech disability, including imaging methods, touch-enabled systems, mechanical and electro-mechanical access, breath-activated methods, and brain–computer interfaces (BCI). The listed AAC sensing modalities are compared in terms of ease of access, affordability, complexity, portability, and typical conversational speeds. A revelation of the associated AAC signal processing, encoding, and retrieval highlights the roles of machine learning (ML) and deep learning (DL) in the development of intelligent AAC solutions. The demands and the affordability of most systems hinder the scale of usage of high-tech AAC. Further research is indeed needed for the development of intelligent AAC applications reducing the associated costs and enhancing the portability of the solutions for a real user’s environment. The consolidation of natural language processing with current solutions also needs to be further explored for the amelioration of the conversational speeds. The recommendations for prospective advances in coming high-tech AAC are addressed in terms of developments to support mobile health communicative applications

    Beyond mobile apps: a survey of technologies for mental well-being

    Get PDF
    Mental health problems are on the rise globally and strain national health systems worldwide. Mental disorders are closely associated with fear of stigma, structural barriers such as financial burden, and lack of available services and resources which often prohibit the delivery of frequent clinical advice and monitoring. Technologies for mental well-being exhibit a range of attractive properties, which facilitate the delivery of state-of-the-art clinical monitoring. This review article provides an overview of traditional techniques followed by their technological alternatives, sensing devices, behaviour changing tools, and feedback interfaces. The challenges presented by these technologies are then discussed with data collection, privacy, and battery life being some of the key issues which need to be carefully considered for the successful deployment of mental health toolkits. Finally, the opportunities this growing research area presents are discussed including the use of portable tangible interfaces combining sensing and feedback technologies. Capitalising on the data these ubiquitous devices can record, state of the art machine learning algorithms can lead to the development of robust clinical decision support tools towards diagnosis and improvement of mental well-being delivery in real-time

    Detecting Stressful Social Interactions Using Wearable Physiological and Inertial Sensors

    Get PDF
    Stress is unavoidable in everyday life which can result in several health related short and long-term adverse consequences. Previous research found that most of the stress events occur due to interpersonal tension followed by work related stress. Enabling automated detection of stressful social interactions using wearable technology will help trigger just-in-time interventions which can help the user cope with the stressful situation. In this dissertation, we show the feasibility of differentiating stressful social interactions from other stressors i.e., work and commute.However, collecting reliable ground truth stressor data in the natural environment is challenging. This dissertation addresses this challenge by designing a Day Reconstruction Method (DRM) based contextual stress visualization that highlights the continuous stress inferences from a wearable sensor with surrounding activities such as conversation, physical activity, and location on a timeline diagram. This dissertation proposes a Conditional Random Field, Context-Free Grammar (CRF-CFG) model to detect conversation from breathing patterns to support the visualization. The advantage of breathing signal is that it does not capture the content of the conversation and hence, is more privacy preserving compared to audio. It proposes a framework to systematically analyze the breathing data collected in the natural environment. However, it requires wearing of chest worn sensor. This dissertation aims to determine stressful social interaction without wearing chest worn sensor or without requiring any conversation model which is privacy sensitive. Therefore, it focuses on detecting stressful social interactions directly from stress time-series only which can be captured using increasingly available wrist worn sensor.This dissertation proposes a framework to systematically analyze the respiration data collected in the natural environment. The analysis includes screening the low-quality data, segmenting the respiration time-series by cycles, and develop time-domain features. It proposes a Conditional Random Field, Context-Free Grammar (CRF-CFG) model to detect conversation episodes from breathing patterns. This system is validated against audio ground-truth in the field with an accuracy of 71.7\%.This dissertation introduces the stress cycle concept to capture the cyclical patterns and identifies novel features from stress time-series data. Furthermore, wrist-worn accelerometry data shows that hand gestures have a distinct pattern during stressful social interactions. The model presented in this dissertation augments accelerometry patterns with the stress cycle patterns for more accurate detection. Finally, the model is trained and validated using data collected from 38 participants in free-living conditions. The model can detect the stressful interactions with an F1-score of 0.83 using stress cycle features and enable the delivery of stress intervention within 3.9 minutes since the onset of a stressful social interaction

    Detection of Talking in Respiratory Signals: A Feasibility Study Using Machine Learning and Wearable Textile-Based Sensors

    Get PDF
    Social isolation and loneliness are major health concerns in young and older people. Traditional approaches to monitor the level of social interaction rely on self-reports. The goal of this study was to investigate if wearable textile-based sensors can be used to accurately detect if the user is talking as a future indicator of social interaction. In a laboratory study, fifteen healthy young participants were asked to talk while performing daily activities such as sitting, standing and walking. It is known that the breathing pattern differs significantly between normal and speech breathing (i.e., talking). We integrated resistive stretch sensors into wearable elastic bands, with a future integration into clothing in mind, to record the expansion and contraction of the chest and abdomen while breathing. We developed an algorithm incorporating machine learning and evaluated its performance in distinguishing between periods of talking and non-talking. In an intra-subject analysis, our algorithm detected talking with an average accuracy of 85%. The highest accuracy of 88% was achieved during sitting and the lowest accuracy of 80.6% during walking. Complete segments of talking were correctly identified with 96% accuracy. From the evaluated machine learning algorithms, the random forest classifier performed best on our dataset. We demonstrate that wearable textile-based sensors in combination with machine learning can be used to detect when the user is talking. In the future, this approach may be used as an indicator of social interaction to prevent social isolation and loneliness

    The analysis of breathing and rhythm in speech

    Get PDF
    Speech rhythm can be described as the temporal patterning by which speech events, such as vocalic onsets, occur. Despite efforts to quantify and model speech rhythm across languages, it remains a scientifically enigmatic aspect of prosody. For instance, one challenge lies in determining how to best quantify and analyse speech rhythm. Techniques range from manual phonetic annotation to the automatic extraction of acoustic features. It is currently unclear how closely these differing approaches correspond to one another. Moreover, the primary means of speech rhythm research has been the analysis of the acoustic signal only. Investigations of speech rhythm may instead benefit from a range of complementary measures, including physiological recordings, such as of respiratory effort. This thesis therefore combines acoustic recording with inductive plethysmography (breath belts) to capture temporal characteristics of speech and speech breathing rhythms. The first part examines the performance of existing phonetic and algorithmic techniques for acoustic prosodic analysis in a new corpus of rhythmically diverse English and Mandarin speech. The second part addresses the need for an automatic speech breathing annotation technique by developing a novel function that is robust to the noisy plethysmography typical of spontaneous, naturalistic speech production. These methods are then applied in the following section to the analysis of English speech and speech breathing in a second, larger corpus. Finally, behavioural experiments were conducted to investigate listeners' perception of speech breathing using a novel gap detection task. The thesis establishes the feasibility, as well as limits, of automatic methods in comparison to manual annotation. In the speech breathing corpus analysis, they help show that speakers maintain a normative, yet contextually adaptive breathing style during speech. The perception experiments in turn demonstrate that listeners are sensitive to the violation of these speech breathing norms, even if unconsciously so. The thesis concludes by underscoring breathing as a necessary, yet often overlooked, component in speech rhythm planning and production
    • …
    corecore