43,695 research outputs found

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Wave modelling - the state of the art

    Get PDF
    This paper is the product of the wave modelling community and it tries to make a picture of the present situation in this branch of science, exploring the previous and the most recent results and looking ahead towards the solution of the problems we presently face. Both theory and applications are considered. The many faces of the subject imply separate discussions. This is reflected into the single sections, seven of them, each dealing with a specific topic, the whole providing a broad and solid overview of the present state of the art. After an introduction framing the problem and the approach we followed, we deal in sequence with the following subjects: (Section) 2, generation by wind; 3, nonlinear interactions in deep water; 4, white-capping dissipation; 5, nonlinear interactions in shallow water; 6, dissipation at the sea bottom; 7, wave propagation; 8, numerics. The two final sections, 9 and 10, summarize the present situation from a general point of view and try to look at the future developments

    From neural PCA to deep unsupervised learning

    Full text link
    A network supporting deep unsupervised learning is presented. The network is an autoencoder with lateral shortcut connections from the encoder to decoder at each level of the hierarchy. The lateral shortcut connections allow the higher levels of the hierarchy to focus on abstract invariant features. While standard autoencoders are analogous to latent variable models with a single layer of stochastic variables, the proposed network is analogous to hierarchical latent variables models. Learning combines denoising autoencoder and denoising sources separation frameworks. Each layer of the network contributes to the cost function a term which measures the distance of the representations produced by the encoder and the decoder. Since training signals originate from all levels of the network, all layers can learn efficiently even in deep networks. The speedup offered by cost terms from higher levels of the hierarchy and the ability to learn invariant features are demonstrated in experiments.Comment: A revised version of an article that has been accepted for publication in Advances in Independent Component Analysis and Learning Machines (2015), edited by Ella Bingham, Samuel Kaski, Jorma Laaksonen and Jouko Lampine
    corecore